## Volumes of hyperbolic $3$-manifolds. Notes on a paper of Gabai, Meyerhoff, and Milley

HTML articles powered by AMS MathViewer

- by T. H. Marshall and G. J. Martin PDF
- Conform. Geom. Dyn.
**7**(2003), 34-48 Request permission

## Abstract:

We present a new approach and improvements to the recent results of Gabai, Meyerhoff and Milley concerning tubes and short geodesics in hyperbolic $3$-manifolds. We establish the following two facts: if a hyperbolic $3$-manifold admits an embedded tubular neighbourhood of radius $r_0>1.32$ about any closed geodesic, then its volume exceeds that of the Weeks manifold. If the shortest geodesic of $M$ has length less than $\ell _0<0.1$, then its volume also exceeds that of the Weeks manifold.## References

- Colin C. Adams,
*The noncompact hyperbolic $3$-manifold of minimal volume*, Proc. Amer. Math. Soc.**100**(1987), no. 4, 601–606. MR**894423**, DOI 10.1090/S0002-9939-1987-0894423-8
Algol I. Algol, - C. Cao, F. W. Gehring, and G. J. Martin,
*Lattice constants and a lemma of Zagier*, Lipa’s legacy (New York, 1995) Contemp. Math., vol. 211, Amer. Math. Soc., Providence, RI, 1997, pp. 107–120. MR**1476983**, DOI 10.1090/conm/211/02816 - Chun Cao and G. Robert Meyerhoff,
*The orientable cusped hyperbolic $3$-manifolds of minimum volume*, Invent. Math.**146**(2001), no. 3, 451–478. MR**1869847**, DOI 10.1007/s002220100167 - David Gabai, G. Robert Meyerhoff, and Peter Milley,
*Volumes of tubes in hyperbolic 3-manifolds*, J. Differential Geom.**57**(2001), no. 1, 23–46. MR**1871490**
GMT D. Gabai, R. Meyerhoff and N. Thurston, - F. W. Gehring, T. H. Marshall, and G. J. Martin,
*The spectrum of elliptic axial distances in Kleinian groups*, Indiana Univ. Math. J.**47**(1998), no. 1, 1–10. MR**1631604**, DOI 10.1512/iumj.1998.47.1433 - F. W. Gehring and G. J. Martin,
*Commutators, collars and the geometry of Möbius groups*, J. Anal. Math.**63**(1994), 175–219. MR**1269219**, DOI 10.1007/BF03008423 - F. W. Gehring and G. J. Martin,
*Precisely invariant collars and the volume of hyperbolic $3$-folds*, J. Differential Geom.**49**(1998), no. 3, 411–435. MR**1669657**, DOI 10.4310/jdg/1214461106 - F. W. Gehring and G. J. Martin,
*The volume of hyperbolic $3$-folds with $p$-torsion, $p\ge 6$*, Quart. J. Math. Oxford Ser. (2)**50**(1999), no. 197, 1–12. MR**1673252**, DOI 10.1093/qjmath/50.197.1 - F. W. Gehring, C. Maclachlan, G. J. Martin, and A. W. Reid,
*Arithmeticity, discreteness and volume*, Trans. Amer. Math. Soc.**349**(1997), no. 9, 3611–3643. MR**1433117**, DOI 10.1090/S0002-9947-97-01989-2 - Troels Jørgensen,
*On discrete groups of Möbius transformations*, Amer. J. Math.**98**(1976), no. 3, 739–749. MR**427627**, DOI 10.2307/2373814
MM T. H. Marshall and G. J. Martin, - Robert Meyerhoff,
*A lower bound for the volume of hyperbolic $3$-manifolds*, Canad. J. Math.**39**(1987), no. 5, 1038–1056. MR**918586**, DOI 10.4153/CJM-1987-053-6
Prze A. Przeworski,

*Volume change under drilling*, to appear. Beardon A. Beardon,

*The geometry of discrete groups*, Springer–Verlag, 1981.

*Homotopy hyperbolic $3$-manifolds are hyperbolic*, Annals of Math., to appear.

*Cylinder packings in hyperbolic space*, preprint.

*Tubes in hyperbolic $3$–manifolds*, Thesis. University of Chicago and Top. and Appl. 128/2-3, 103-122. Prze2 A. Przeworski,

*Density of tube packings in hyperbolic space*, to appear.

## Additional Information

**T. H. Marshall**- Affiliation: Department of Mathematics, University of Auckland, Auckland, New Zealand
- Email: t_marshall@math.auckland.ac.nz
**G. J. Martin**- Affiliation: Department of Mathematics, University of Auckland, Auckland, New Zealand
- Email: martin@math.auckland.ac.nz
- Received by editor(s): August 30, 2001
- Received by editor(s) in revised form: April 10, 2003
- Published electronically: June 17, 2003
- Additional Notes: Research supported in part by the N. Z. Marsden Fund and the N. Z. Royal Society (James Cook Fellowship)
- © Copyright 2003 American Mathematical Society
- Journal: Conform. Geom. Dyn.
**7**(2003), 34-48 - MSC (2000): Primary 30F40, 30D50, 57M50
- DOI: https://doi.org/10.1090/S1088-4173-03-00081-X
- MathSciNet review: 1992036