Conformal Dehn surgery and the shape of Maskit’s embedding
HTML articles powered by AMS MathViewer
- by Jouni Parkkonen
- Conform. Geom. Dyn. 8 (2004), 143-157
- DOI: https://doi.org/10.1090/S1088-4173-04-00116-X
- Published electronically: October 14, 2004
- PDF | Request permission
Abstract:
We study the geometric limits of sequences of loxodromic cyclic groups which arise from conformal Dehn surgery. The results are applied to obtain an asymptotic description of the shape of the main cusp of the Maskit embedding of the Teichmüller space of once-punctured tori.References
- Lipman Bers, Spaces of Kleinian groups, Several Complex Variables, I (Proc. Conf., Univ. of Maryland, College Park, Md., 1970) Springer, Berlin, 1970, pp. 9–34. MR 0271333
- Lipman Bers, Finite-dimensional Teichmüller spaces and generalizations, Bull. Amer. Math. Soc. (N.S.) 5 (1981), no. 2, 131–172. MR 621883, DOI 10.1090/S0273-0979-1981-14933-8
- Todd A. Drumm and Jonathan A. Poritz, Ford and Dirichlet domains for cyclic subgroups of $\textrm {PSL}_2(\mathbf C)$ acting on $\mathbf H^3_{\mathbf R}$ and $\partial \mathbf H^3_{\mathbf R}$, Conform. Geom. Dyn. 3 (1999), 116–150. MR 1716572, DOI 10.1090/S1088-4173-99-00042-9
- N. A. Gusevskiĭ, On double generated Kleinian groups, Sibirsk. Mat. Zh. 23 (1982), no. 1, 183–186, 223 (Russian). MR 651891
- Troels Jørgensen, On cyclic groups of Möbius transformations, Math. Scand. 33 (1973), 250–260 (1974). MR 348103, DOI 10.7146/math.scand.a-11487
- T. Jørgensen and A. Marden, Algebraic and geometric convergence of Kleinian groups, Math. Scand. 66 (1990), no. 1, 47–72. MR 1060898, DOI 10.7146/math.scand.a-12292
- Linda Keen and Caroline Series, Pleating coordinates for the Maskit embedding of the Teichmüller space of punctured tori, Topology 32 (1993), no. 4, 719–749. MR 1241870, DOI 10.1016/0040-9383(93)90048-Z
- Steven P. Kerckhoff and William P. Thurston, Noncontinuity of the action of the modular group at Bers’ boundary of Teichmüller space, Invent. Math. 100 (1990), no. 1, 25–47. MR 1037141, DOI 10.1007/BF01231179
- Irwin Kra, Canonical mappings between Teichmüller spaces, Bull. Amer. Math. Soc. (N.S.) 4 (1981), no. 2, 143–179. MR 598682, DOI 10.1090/S0273-0979-1981-14870-9
- Irwin Kra, Horocyclic coordinates for Riemann surfaces and moduli spaces. I. Teichmüller and Riemann spaces of Kleinian groups, J. Amer. Math. Soc. 3 (1990), no. 3, 499–578. MR 1049503, DOI 10.1090/S0894-0347-1990-1049503-1
- Bernard Maskit, Moduli of marked Riemann surfaces, Bull. Amer. Math. Soc. 80 (1974), 773–777. MR 346149, DOI 10.1090/S0002-9904-1974-13600-1
- Bernard Maskit, Kleinian groups, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 287, Springer-Verlag, Berlin, 1988. MR 959135
- Katsuhiko Matsuzaki and Masahiko Taniguchi, Hyperbolic manifolds and Kleinian groups, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998. Oxford Science Publications. MR 1638795
- Curt McMullen, Cusps are dense, Ann. of Math. (2) 133 (1991), no. 1, 217–247. MR 1087348, DOI 10.2307/2944328
- Curtis T. McMullen, Hausdorff dimension and conformal dynamics. I. Strong convergence of Kleinian groups, J. Differential Geom. 51 (1999), no. 3, 471–515. MR 1726737
- Yair N. Minsky, The classification of punctured-torus groups, Ann. of Math. (2) 149 (1999), no. 2, 559–626. MR 1689341, DOI 10.2307/120976
- Hideki Miyachi, On the horocyclic coordinate for the Teichmüller space of once punctured tori, Proc. Amer. Math. Soc. 130 (2002), no. 4, 1019–1029. MR 1873775, DOI 10.1090/S0002-9939-01-06170-6
- Hideki Miyachi, Cusps in complex boundaries of one-dimensional Teichmüller space, Conform. Geom. Dyn. 7 (2003), 103–151. MR 2023050, DOI 10.1090/S1088-4173-03-00065-1
- Jouni Parkkonen, Geometric limits of cyclic groups and the shape of Schottky space, Math. Proc. Cambridge Philos. Soc. 137 (2004), no. 1, 55–68. MR 2075042, DOI 10.1017/S0305004104007583 Thurston W. P. Thurston, The geometry and topology of three-manifolds, lecture notes, Princeton University, 1979. Wright D. J. Wright, The shape of the boundary of Maskit’s embedding of the Teichmüller space of punctured tori, preprint, 1990.
Bibliographic Information
- Jouni Parkkonen
- Affiliation: Department of Mathematics and Statistics, P.O. Box 35, 40014 University of Jyväskylä, Finland
- Email: parkkone@maths.jyu.fi
- Received by editor(s): September 10, 2002
- Received by editor(s) in revised form: June 17, 2003
- Published electronically: October 14, 2004
- Additional Notes: The author was supported by Academy of Finland grants 42948 and 41320
- © Copyright 2004
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Conform. Geom. Dyn. 8 (2004), 143-157
- MSC (2000): Primary 30F40, 30F60
- DOI: https://doi.org/10.1090/S1088-4173-04-00116-X
- MathSciNet review: 2122523