On Branson’s $Q$-curvature of order eight
HTML articles powered by AMS MathViewer
- by Andreas Juhl
- Conform. Geom. Dyn. 15 (2011), 20-43
- DOI: https://doi.org/10.1090/S1088-4173-2011-00221-9
- Published electronically: March 1, 2011
- PDF | Request permission
Abstract:
We prove universal recursive formulas for Branson’s $Q$-curvature of order eight in terms of lower-order $Q$-curvatures, lower-order GJMS- operators and holographic coefficients. The results confirm a special case of a conjecture in [On conformally covariant powers of the Laplacian, arXiv:0905.3992v3].References
- Helga Baum and Andreas Juhl, Conformal differential geometry, Oberwolfach Seminars, vol. 40, Birkhäuser Verlag, Basel, 2010. $Q$-curvature and conformal holonomy. MR 2598414, DOI 10.1007/978-3-7643-9909-2
- Thomas P. Branson, Sharp inequalities, the functional determinant, and the complementary series, Trans. Amer. Math. Soc. 347 (1995), no. 10, 3671–3742. MR 1316845, DOI 10.1090/S0002-9947-1995-1316845-2
- C. Falk and A. Juhl, Universal recursive formulae for $Q$-curvature. to appear in Crelle’s Journal. arXiv:math/0804.2745v2.
- C. Fefferman and C. R. Graham. The ambient metric. arXiv:0710.0919v2
- A. Rod Gover and Kengo Hirachi, Conformally invariant powers of the Laplacian—a complete nonexistence theorem, J. Amer. Math. Soc. 17 (2004), no. 2, 389–405. MR 2051616, DOI 10.1090/S0894-0347-04-00450-3
- A. Rod Gover and Lawrence J. Peterson, Conformally invariant powers of the Laplacian, $Q$-curvature, and tractor calculus, Comm. Math. Phys. 235 (2003), no. 2, 339–378. MR 1969732, DOI 10.1007/s00220-002-0790-4
- C. Robin Graham, Ralph Jenne, Lionel J. Mason, and George A. J. Sparling, Conformally invariant powers of the Laplacian. I. Existence, J. London Math. Soc. (2) 46 (1992), no. 3, 557–565. MR 1190438, DOI 10.1112/jlms/s2-46.3.557
- C. Robin Graham, Conformally invariant powers of the Laplacian. II. Nonexistence, J. London Math. Soc. (2) 46 (1992), no. 3, 566–576. MR 1190439, DOI 10.1112/jlms/s2-46.3.566
- C. Robin Graham, Volume and area renormalizations for conformally compact Einstein metrics, The Proceedings of the 19th Winter School “Geometry and Physics” (Srní, 1999), 2000, pp. 31–42. MR 1758076
- C. Robin Graham, Extended obstruction tensors and renormalized volume coefficients, Adv. Math. 220 (2009), no. 6, 1956–1985. MR 2493186, DOI 10.1016/j.aim.2008.11.015
- C. Robin Graham and Andreas Juhl, Holographic formula for $Q$-curvature, Adv. Math. 216 (2007), no. 2, 841–853. MR 2351380, DOI 10.1016/j.aim.2007.05.021
- C. Robin Graham and Maciej Zworski, Scattering matrix in conformal geometry, Invent. Math. 152 (2003), no. 1, 89–118. MR 1965361, DOI 10.1007/s00222-002-0268-1
- Andreas Juhl, Families of conformally covariant differential operators, $Q$-curvature and holography, Progress in Mathematics, vol. 275, Birkhäuser Verlag, Basel, 2009. MR 2521913, DOI 10.1007/978-3-7643-9900-9
- A. Juhl. On conformally covariant powers of the Laplacian. submitted. arXiv:0905.3992v3
- A. Juhl and C. Krattenthaler, Summation formulas for GJMS-operators and $Q$-curvatures on the Möbius sphere. submitted. arXiv:0910.4840v1
Bibliographic Information
- Andreas Juhl
- Affiliation: Humboldt-Universität, Institut für Mathematik, Unter den Linden, D-10099 Berlin, Germany
- Address at time of publication: Uppsala Universitet, Matematiska Institutionen, Box 480, S-75106 Uppsala, Sweden
- Email: andreasj@math.uu.se
- Received by editor(s): May 2, 2010
- Published electronically: March 1, 2011
- Additional Notes: This work was supported by SFB 647 “Space-Time-Matter” of DFG
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Conform. Geom. Dyn. 15 (2011), 20-43
- MSC (2010): Primary 53B20, 53B30; Secondary 53A30
- DOI: https://doi.org/10.1090/S1088-4173-2011-00221-9
- MathSciNet review: 2775346