On decomposable rational maps
HTML articles powered by AMS MathViewer
- by Carlos Cabrera and Peter Makienko
- Conform. Geom. Dyn. 15 (2011), 210-218
- DOI: https://doi.org/10.1090/S1088-4173-2011-00233-5
- Published electronically: November 22, 2011
- PDF | Request permission
Abstract:
If $R$ is a rational map, the main result is a uniformization theorem for the space of decompositions of the iterates of $R$. Secondly, we show that Fatou conjecture holds for decomposable rational maps.References
- W. Bergweiler, Erratum to “An example concerning factorization of rational functions”, http://analysis.math.uni-kiel.de/bergweiler/schrift.html.
- Walter Bergweiler, An example concerning factorization of rational functions, Exposition. Math. 11 (1993), no. 3, 281–283. MR 1224108
- A. È. Erëmenko, Some functional equations connected with the iteration of rational functions, Algebra i Analiz 1 (1989), no. 4, 102–116 (Russian); English transl., Leningrad Math. J. 1 (1990), no. 4, 905–919. MR 1027462
- Vadim A. Kaimanovich and Mikhail Lyubich, Conformal and harmonic measures on laminations associated with rational maps, Mem. Amer. Math. Soc. 173 (2005), no. 820, vi+119. MR 2111096, DOI 10.1090/memo/0820
- M. Yu. Lyubich, Dynamics of rational transformations: topological picture, Uspekhi Mat. Nauk 41 (1986), no. 4(250), 35–95, 239 (Russian). MR 863874
- Mikhail Lyubich and Yair Minsky, Laminations in holomorphic dynamics, J. Differential Geom. 47 (1997), no. 1, 17–94. MR 1601430
- R. Mañé, P. Sad, and D. Sullivan, On the dynamics of rational maps, Ann. Scien. Ec. Norm. Sup. Paris (4) (1983).
- Peter M. Makienko, Remarks on the dynamic of the Ruelle operator and invariant differentials, Dal′nevost. Mat. Zh. 8 (2008), no. 2, 180–205 (English, with English and Russian summaries). MR 2731771
- Curtis T. McMullen and Dennis P. Sullivan, Quasiconformal homeomorphisms and dynamics. III. The Teichmüller space of a holomorphic dynamical system, Adv. Math. 135 (1998), no. 2, 351–395. MR 1620850, DOI 10.1006/aima.1998.1726
- P. Müller and M. Zieve, On Ritt’s polynomial decomposition theorems, http://arxiv.org/ abs/0807.3578, July 2008.
- J. F. Ritt, Prime and composite polynomials, Trans. Amer. Math. Soc. 23 (1922), no. 1, 51–66. MR 1501189, DOI 10.1090/S0002-9947-1922-1501189-9
- J. F. Ritt, Permutable rational functions, Trans. Amer. Math. Soc. 25 (1923), no. 3, 399–448. MR 1501252, DOI 10.1090/S0002-9947-1923-1501252-3
- Zbigniew Słodkowski, Holomorphic motions commuting with semigroups, Studia Math. 119 (1996), no. 1, 1–16. MR 1388770, DOI 10.4064/sm-119-1-1-16
Bibliographic Information
- Carlos Cabrera
- Affiliation: Instituto de Matemáticas, Unidad Cuernavaca, University Nacional Autonoma de Mexico, Universidad s/n Col Lomas de Chamilpa, 62100 Cuernavaca, Mexico
- MR Author ID: 829036
- Email: carlos@matcuer.unam.mx
- Peter Makienko
- Affiliation: Instituto de Matemáticas, Unidad Cuernavaca, University Nacional Autonoma de Mexico, Universidad s/n Col Lomas de Chamilpa, 62100 Cuernavaca, Mexico
- Email: makienko@matcuer.unam.mx
- Received by editor(s): June 30, 2011
- Published electronically: November 22, 2011
- Additional Notes: This work was partially supported by PAPIIT project IN 100409 and CONACYT 153850.
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Conform. Geom. Dyn. 15 (2011), 210-218
- MSC (2010): Primary 37F10; Secondary 30D05
- DOI: https://doi.org/10.1090/S1088-4173-2011-00233-5
- MathSciNet review: 2869014