## Conformal mapping, convexity and total absolute curvature

HTML articles powered by AMS MathViewer

- by Maria Kourou
- Conform. Geom. Dyn.
**22**(2018), 15-32 - DOI: https://doi.org/10.1090/ecgd/317
- Published electronically: March 5, 2018
- PDF | Request permission

## Abstract:

Let $f$ be a holomorphic and locally univalent function on the unit disk $\mathbb {D}$. Let $C_r$ be the circle centered at the origin of radius $r$, where $0<r <1$. We will prove that the total absolute curvature of $f(C_r)$ is an increasing function of $r$. Moreover, we present inequalities involving the $\mathrm {L}^p$-norm of the curvature of $f(C_r)$. Using the hyperbolic geometry of $\mathbb {D}$, we will prove an analogous monotonicity result for the hyperbolic total curvature. In the case where $f$ is a hyperbolically convex mapping of $\mathbb {D}$ into itself, we compare the hyperbolic total curvature of the curves $C_r$ and $f(C_r)$ and show that their ratio is a decreasing function. The last result can also be seen as a geometric version of the classical Schwarz Lemma.## References

- Lars V. Ahlfors,
*Conformal invariants: topics in geometric function theory*, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. MR**0357743** - Rauno Aulaskari and Huaihui Chen,
*Area inequality and $Q_p$ norm*, J. Funct. Anal.**221**(2005), no. 1, 1–24. MR**2124895**, DOI 10.1016/j.jfa.2004.12.007 - A. F. Beardon and D. Minda,
*The hyperbolic metric and geometric function theory*, Quasiconformal mappings and their applications, Narosa, New Delhi, 2007, pp. 9–56. MR**2492498** - Dimitrios Betsakos,
*Geometric versions of Schwarz’s lemma for quasiregular mappings*, Proc. Amer. Math. Soc.**139**(2011), no. 4, 1397–1407. MR**2748432**, DOI 10.1090/S0002-9939-2010-10604-4 - Dimitrios Betsakos,
*Multi-point variations of the Schwarz lemma with diameter and width conditions*, Proc. Amer. Math. Soc.**139**(2011), no. 11, 4041–4052. MR**2823049**, DOI 10.1090/S0002-9939-2011-10954-7 - Dimitrios Betsakos,
*Hyperbolic geometric versions of Schwarz’s lemma*, Conform. Geom. Dyn.**17**(2013), 119–132. MR**3126908**, DOI 10.1090/S1088-4173-2013-00260-9 - Dimitrios Betsakos and Stamatis Pouliasis,
*Versions of Schwarz’s lemma for condenser capacity and inner radius*, Canad. Math. Bull.**56**(2013), no. 2, 241–250. MR**3043051**, DOI 10.4153/CMB-2011-189-8 - Robert B. Burckel, Donald E. Marshall, David Minda, Pietro Poggi-Corradini, and Thomas J. Ransford,
*Area, capacity and diameter versions of Schwarz’s lemma*, Conform. Geom. Dyn.**12**(2008), 133–152. MR**2434356**, DOI 10.1090/S1088-4173-08-00181-1 - Peter L. Duren,
*Univalent functions*, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 259, Springer-Verlag, New York, 1983. MR**708494** - Michael E. Gage,
*An isoperimetric inequality with applications to curve shortening*, Duke Math. J.**50**(1983), no. 4, 1225–1229. MR**726325**, DOI 10.1215/S0012-7094-83-05052-4 - G. H. Hardy, J. E. Littlewood, and G. Pólya,
*Inequalities*, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1988. Reprint of the 1952 edition. MR**944909** - W. K. Hayman,
*Multivalent functions*, 2nd ed., Cambridge Tracts in Mathematics, vol. 110, Cambridge University Press, Cambridge, 1994. MR**1310776**, DOI 10.1017/CBO9780511526268 - Maurice Heins,
*Selected topics in the classical theory of functions of a complex variable*, Athena Series: Selected Topics in Mathematics, Holt, Rinehart and Winston, New York, 1962. MR**0162913** - Antoine Henrot and Othmane Mounjid,
*Elasticae and inradius*, Arch. Math. (Basel)**108**(2017), no. 2, 181–196. MR**3605064**, DOI 10.1007/s00013-016-0999-7 - William Ma, David Minda, and Diego Mejia,
*Hyperbolically 1-convex functions*, Ann. Polon. Math.**84**(2004), no. 3, 185–202. MR**2110925**, DOI 10.4064/ap84-3-1 - Wan Cang Ma and David Minda,
*Hyperbolically convex functions*, Ann. Polon. Math.**60**(1994), no. 1, 81–100. MR**1295110**, DOI 10.4064/ap-60-1-81-100 - W. Ma and D. Minda,
*Geometric properties of hyperbolic geodesics*, Quasiconformal mappings and their applications, Narosa, New Delhi, 2007, pp. 165–187. MR**2492503** - Diego Mejía and David Minda,
*Hyperbolic geometry in $k$-convex regions*, Pacific J. Math.**141**(1990), no. 2, 333–354. MR**1035447**, DOI 10.2140/pjm.1990.141.333 - David Minda,
*Applications of hyperbolic convexity to Euclidean and spherical convexity*, J. Analyse Math.**49**(1987), 90–105. MR**928508**, DOI 10.1007/BF02792893 - M. Papadimitrakis,
*On convexity of level curves of harmonic functions in the hyperbolic plane*, Proc. Amer. Math. Soc.**114**(1992), no. 3, 695–698. MR**1086339**, DOI 10.1090/S0002-9939-1992-1086339-3 - John A. Pfaltzgraff and Bernard Pinchuk,
*A variational method for classes of meromorphic functions*, J. Analyse Math.**24**(1971), 101–150. MR**281899**, DOI 10.1007/BF02790372 - George Pólya and Gabor Szegő,
*Problems and theorems in analysis. II*, Classics in Mathematics, Springer-Verlag, Berlin, 1998. Theory of functions, zeros, polynomials, determinants, number theory, geometry; Translated from the German by C. E. Billigheimer; Reprint of the 1976 English translation. MR**1492448**, DOI 10.1007/978-3-642-61905-2_{7} - Christian Pommerenke,
*Univalent functions*, Studia Mathematica/Mathematische Lehrbücher, Band XXV, Vandenhoeck & Ruprecht, Göttingen, 1975. With a chapter on quadratic differentials by Gerd Jensen. MR**0507768** - T. Radó,
*Subharmonic Functions*, Springer, 1937. - Thomas Ransford,
*Potential theory in the complex plane*, London Mathematical Society Student Texts, vol. 28, Cambridge University Press, Cambridge, 1995. MR**1334766**, DOI 10.1017/CBO9780511623776 - Michael Spivak,
*A comprehensive introduction to differential geometry. Vol. V*, 2nd ed., Publish or Perish, Inc., Wilmington, Del., 1979. MR**532834** - E. Study,
*Vorlesungen über ausgewählte Gegenstände der Geometrie (German edition*), Cornell University Library, 1911.

## Bibliographic Information

**Maria Kourou**- Affiliation: Department of Mathematics, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
- MR Author ID: 1257461
- Email: mkouroue@math.auth.gr
- Received by editor(s): June 29, 2017
- Received by editor(s) in revised form: November 23, 2017, and January 25, 2018
- Published electronically: March 5, 2018
- © Copyright 2018 American Mathematical Society
- Journal: Conform. Geom. Dyn.
**22**(2018), 15-32 - MSC (2010): Primary 30C45, 30C35
- DOI: https://doi.org/10.1090/ecgd/317
- MathSciNet review: 3770612