Transfer factors for Lie Algebras
HTML articles powered by AMS MathViewer
- by Robert E. Kottwitz
- Represent. Theory 3 (1999), 127-138
- DOI: https://doi.org/10.1090/S1088-4165-99-00068-0
- Published electronically: July 7, 1999
- PDF | Request permission
Abstract:
Let $G$ be a quasi-split connected reductive group over a local field of characteristic $0$, and fix a regular nilpotent element in the Lie algebra $\mathfrak g$ of $G$. A theorem of Kostant then provides a canonical conjugacy class within each stable conjugacy class of regular semisimple elements in $\mathfrak g$. Normalized transfer factors take the value $1$ on these canonical conjugacy classes.References
- Neil Chriss and Victor Ginzburg, Representation theory and complex geometry, Birkhäuser Boston, Inc., Boston, MA, 1997. MR 1433132
- Bertram Kostant, Lie group representations on polynomial rings, Amer. J. Math. 85 (1963), 327–404. MR 158024, DOI 10.2307/2373130
- Robert E. Kottwitz, Stable trace formula: elliptic singular terms, Math. Ann. 275 (1986), no. 3, 365–399. MR 858284, DOI 10.1007/BF01458611
- R. P. Langlands, Orbital integrals on forms of $\textrm {SL}(3)$. I, Amer. J. Math. 105 (1983), no. 2, 465–506. MR 701566, DOI 10.2307/2374265
- R. P. Langlands and D. Shelstad, On the definition of transfer factors, Math. Ann. 278 (1987), no. 1-4, 219–271. MR 909227, DOI 10.1007/BF01458070
- D. Shelstad, A formula for regular unipotent germs, Astérisque 171-172 (1989), 275–277. Orbites unipotentes et représentations, II. MR 1021506
- J.-L. Waldspurger, Le lemme fondamental implique le transfert, Compositio Math. 105 (1997), no. 2, 153–236 (French). MR 1440722, DOI 10.1023/A:1000103112268
Bibliographic Information
- Robert E. Kottwitz
- Affiliation: Department of Mathematics, University of Chicago, 5734 University Avenue, Chicago, Illinois 60637
- Email: kottwitz@math.uchicago.edu
- Received by editor(s): April 29, 1999
- Published electronically: July 7, 1999
- © Copyright 1999 American Mathematical Society
- Journal: Represent. Theory 3 (1999), 127-138
- MSC (1991): Primary 22E50; Secondary 11S37
- DOI: https://doi.org/10.1090/S1088-4165-99-00068-0
- MathSciNet review: 1703328