Skip to Main Content

Representation Theory

Published by the American Mathematical Society, the Representation Theory (ERT) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-4165

The 2020 MCQ for Representation Theory is 0.7.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


The Howe duality and the projective representations of symmetric groups
HTML articles powered by AMS MathViewer

by Alexander Sergeev PDF
Represent. Theory 3 (1999), 416-434 Request permission


The symmetric group $\mathfrak {S}_{k}$ possesses a nontrivial central extension, whose irreducible representations, different from the irreducible representations of $\mathfrak {S}_{k}$ itself, coincide with the irreducible representations of the algebra $\mathfrak {A}_{k}$ generated by indeterminates $\tau _{i, j}$ for $i\neq j$, $1\leq i, j\leq n$ subject to the relations \begin{gather*} \tau _{i, j}=-\tau _{j, i}, \quad \tau _{i, j}^{2}=1, \quad \tau _{i, j}\tau _{m, l}=-\tau _{m, l}\tau _{i, j}\text { if }\{i, j\}\cap \{m, l\}=\emptyset ;\ \tau _{i, j}\tau _{j, m}\tau _{i, j}=\tau _{j, m}\tau _{i, j}\tau _{j, m}=-\tau _{i, m}\; \; \text { for any } i, j, l, m. \end{gather*} Recently M. Nazarov realized irreducible representations of $\mathfrak {A}_{k}$ and Young symmetrizers by means of the Howe duality between the Lie superalgebra $\mathfrak {q}(n)$ and the Hecke algebra $H_{k}=\mathfrak {S}_{k}\circ Cl_{k}$, the semidirect product of $\mathfrak {S}_{k}$ with the Clifford algebra $Cl_{k}$ on $k$ indeterminates. Here I construct one more analog of Young symmetrizers in $H_{k}$ as well as the analogs of Specht modules for $\mathfrak {A}_{k}$ and $H_{k}$.
  • J. N. Bernstein and D. A. Leĭtes, The superalgebra $Q(n)$, the odd trace and the odd determinant, C. R. Acad. Bulgare Sci. 35 (1982), no. 3, 285–286. MR 677839
  • G. D. James, The representation theory of the symmetric groups, Lecture Notes in Mathematics, vol. 682, Springer, Berlin, 1978. MR 513828, DOI 10.1007/BFb0067708
  • Andrew R. Jones, The structure of the Young symmetrizers for spin representations of the symmetric group. I, J. Algebra 205 (1998), no. 2, 626–660. MR 1632785, DOI 10.1006/jabr.1997.7400
  • Jones A., The structure of the Young’s symmetrizers for spin representations of the symmetric group. II., J. Algebra, 213, 1999, 381–404.
  • Jones A. and Nazarov M., Affine Sergeev algebra and $q$-analogs of the Young’s symmetrizers for projective representations of the symmetric group, Proc. London Math. Soc., 78, 1999, 481–512.
  • A.-A. A. Jucys, Symmetric polynomials and the center of the symmetric group ring, Rep. Mathematical Phys. 5 (1974), no. 1, 107–112. MR 419576, DOI 10.1016/0034-4877(74)90019-6
  • A. Jucis, Factorization of Young’s projection operators for symmetric groups, Litovsk. Fiz. Sb. 11 (1971), 1–10 (Russian, with English and Lithuanian summaries). MR 290671
  • D. A. Leĭtes, Lie superalgebras, Current problems in mathematics, Vol. 25, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1984, pp. 3–49 (Russian). MR 770940
  • I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144
  • G. E. Murphy, A new construction of Young’s seminormal representation of the symmetric groups, J. Algebra 69 (1981), no. 2, 287–297. MR 617079, DOI 10.1016/0021-8693(81)90205-2
  • M. L. Nazarov, An orthogonal basis in irreducible projective representations of the symmetric group, Funktsional. Anal. i Prilozhen. 22 (1988), no. 1, 77–78 (Russian); English transl., Funct. Anal. Appl. 22 (1988), no. 1, 66–68. MR 936708, DOI 10.1007/BF01077731
  • Maxim Nazarov, Young’s symmetrizers for projective representations of the symmetric group, Adv. Math. 127 (1997), no. 2, 190–257. MR 1448714, DOI 10.1006/aima.1997.1621
  • Andrei Okounkov and Anatoly Vershik, A new approach to representation theory of symmetric groups, Selecta Math. (N.S.) 2 (1996), no. 4, 581–605. MR 1443185, DOI 10.1007/PL00001384
  • I. B. Penkov, Characters of typical irreducible finite-dimensional ${\mathfrak {q}}(n)$-modules, Funktsional. Anal. i Prilozhen. 20 (1986), no. 1, 37–45, 96 (Russian). MR 831047, DOI 10.1007/BF01077312
  • Piotr Pragacz, Algebro-geometric applications of Schur $S$- and $Q$-polynomials, Topics in invariant theory (Paris, 1989/1990) Lecture Notes in Math., vol. 1478, Springer, Berlin, 1991, pp. 130–191. MR 1180989, DOI 10.1007/BFb0083503
  • Arun Ram, Seminormal representations of Weyl groups and Iwahori-Hecke algebras, Proc. London Math. Soc. (3) 75 (1997), no. 1, 99–133. MR 1444315, DOI 10.1112/S0024611597000282
  • Schepochkina I., Maximal subalgebras of matrix Lie superalgebras, hep-th/9702122.
  • A. N. Sergeev, Tensor algebra of the identity representation as a module over the Lie superalgebras $\textrm {Gl}(n,\,m)$ and $Q(n)$, Mat. Sb. (N.S.) 123(165) (1984), no. 3, 422–430 (Russian). MR 735715
  • A. N. Sergeev, The centre of enveloping algebra for Lie superalgebra $Q(n,\,\textbf {C})$, Lett. Math. Phys. 7 (1983), no. 3, 177–179. MR 706205, DOI 10.1007/BF00400431
  • Sergeev A., Irreducible representations of solvable Lie superalgebras, math.RT/9810109.
  • T. Venkatarayudu, The $7$-$15$ problem, Proc. Indian Acad. Sci., Sect. A. 9 (1939), 531. MR 0000001, DOI 10.1090/gsm/058
  • Yamaguchi M., A duality of the twisted group algebra of the symmetric group and a Lie superalgebra, math.RT/9811090.
  • Yamaguchi M., A duality of the twisted group algebra of the hyperoctaedral group and the queer Lie superalgebra, math.RT/9903159.
Similar Articles
  • Retrieve articles in Representation Theory of the American Mathematical Society with MSC (1991): 20C30, 20C25, 17A70
  • Retrieve articles in all journals with MSC (1991): 20C30, 20C25, 17A70
Additional Information
  • Alexander Sergeev
  • Affiliation: On leave of absence from Balakovo Institute of Technique of Technology and Control, Branch of Saratov State Technical University, Russia; Department of Mathematics, University of Stockholm, Roslagsv. 101, Kräftriket hus 6, S-106 91, Stockholm, Sweden
  • Email: (subject: for Sergeev)
  • Received by editor(s): September 4, 1998
  • Received by editor(s) in revised form: September 8, 1999
  • Published electronically: November 9, 1999
  • Additional Notes: I am thankful to D. Leites for support; to him and the referee for help
  • © Copyright 1999 American Mathematical Society
  • Journal: Represent. Theory 3 (1999), 416-434
  • MSC (1991): Primary 20C30, 20C25, 17A70
  • DOI:
  • MathSciNet review: 1722115