## The Howe duality and the projective representations of symmetric groups

HTML articles powered by AMS MathViewer

- by Alexander Sergeev PDF
- Represent. Theory
**3**(1999), 416-434 Request permission

## Abstract:

The symmetric group $\mathfrak {S}_{k}$ possesses a nontrivial central extension, whose irreducible representations, different from the irreducible representations of $\mathfrak {S}_{k}$ itself, coincide with the irreducible representations of the algebra $\mathfrak {A}_{k}$ generated by indeterminates $\tau _{i, j}$ for $i\neq j$, $1\leq i, j\leq n$ subject to the relations \begin{gather*} \tau _{i, j}=-\tau _{j, i}, \quad \tau _{i, j}^{2}=1, \quad \tau _{i, j}\tau _{m, l}=-\tau _{m, l}\tau _{i, j}\text { if }\{i, j\}\cap \{m, l\}=\emptyset ;\ \tau _{i, j}\tau _{j, m}\tau _{i, j}=\tau _{j, m}\tau _{i, j}\tau _{j, m}=-\tau _{i, m}\; \; \text { for any } i, j, l, m. \end{gather*} Recently M. Nazarov realized irreducible representations of $\mathfrak {A}_{k}$ and Young symmetrizers by means of the Howe duality between the Lie superalgebra $\mathfrak {q}(n)$ and the Hecke algebra $H_{k}=\mathfrak {S}_{k}\circ Cl_{k}$, the semidirect product of $\mathfrak {S}_{k}$ with the Clifford algebra $Cl_{k}$ on $k$ indeterminates. Here I construct one more analog of Young symmetrizers in $H_{k}$ as well as the analogs of Specht modules for $\mathfrak {A}_{k}$ and $H_{k}$.## References

- J. N. Bernstein and D. A. Leĭtes,
*The superalgebra $Q(n)$, the odd trace and the odd determinant*, C. R. Acad. Bulgare Sci.**35**(1982), no. 3, 285–286. MR**677839** - G. D. James,
*The representation theory of the symmetric groups*, Lecture Notes in Mathematics, vol. 682, Springer, Berlin, 1978. MR**513828**, DOI 10.1007/BFb0067708 - Andrew R. Jones,
*The structure of the Young symmetrizers for spin representations of the symmetric group. I*, J. Algebra**205**(1998), no. 2, 626–660. MR**1632785**, DOI 10.1006/jabr.1997.7400 - Jones A., The structure of the Young’s symmetrizers for spin representations of the symmetric group. II., J. Algebra, 213, 1999, 381–404.
- Jones A. and Nazarov M., Affine Sergeev algebra and $q$-analogs of the Young’s symmetrizers for projective representations of the symmetric group, Proc. London Math. Soc., 78, 1999, 481–512.
- A.-A. A. Jucys,
*Symmetric polynomials and the center of the symmetric group ring*, Rep. Mathematical Phys.**5**(1974), no. 1, 107–112. MR**419576**, DOI 10.1016/0034-4877(74)90019-6 - A. Jucis,
*Factorization of Young’s projection operators for symmetric groups*, Litovsk. Fiz. Sb.**11**(1971), 1–10 (Russian, with English and Lithuanian summaries). MR**290671** - D. A. Leĭtes,
*Lie superalgebras*, Current problems in mathematics, Vol. 25, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1984, pp. 3–49 (Russian). MR**770940** - I. G. Macdonald,
*Symmetric functions and Hall polynomials*, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR**1354144** - G. E. Murphy,
*A new construction of Young’s seminormal representation of the symmetric groups*, J. Algebra**69**(1981), no. 2, 287–297. MR**617079**, DOI 10.1016/0021-8693(81)90205-2 - M. L. Nazarov,
*An orthogonal basis in irreducible projective representations of the symmetric group*, Funktsional. Anal. i Prilozhen.**22**(1988), no. 1, 77–78 (Russian); English transl., Funct. Anal. Appl.**22**(1988), no. 1, 66–68. MR**936708**, DOI 10.1007/BF01077731 - Maxim Nazarov,
*Young’s symmetrizers for projective representations of the symmetric group*, Adv. Math.**127**(1997), no. 2, 190–257. MR**1448714**, DOI 10.1006/aima.1997.1621 - Andrei Okounkov and Anatoly Vershik,
*A new approach to representation theory of symmetric groups*, Selecta Math. (N.S.)**2**(1996), no. 4, 581–605. MR**1443185**, DOI 10.1007/PL00001384 - I. B. Penkov,
*Characters of typical irreducible finite-dimensional ${\mathfrak {q}}(n)$-modules*, Funktsional. Anal. i Prilozhen.**20**(1986), no. 1, 37–45, 96 (Russian). MR**831047**, DOI 10.1007/BF01077312 - Piotr Pragacz,
*Algebro-geometric applications of Schur $S$- and $Q$-polynomials*, Topics in invariant theory (Paris, 1989/1990) Lecture Notes in Math., vol. 1478, Springer, Berlin, 1991, pp. 130–191. MR**1180989**, DOI 10.1007/BFb0083503 - Arun Ram,
*Seminormal representations of Weyl groups and Iwahori-Hecke algebras*, Proc. London Math. Soc. (3)**75**(1997), no. 1, 99–133. MR**1444315**, DOI 10.1112/S0024611597000282 - Schepochkina I., Maximal subalgebras of matrix Lie superalgebras, hep-th/9702122.
- A. N. Sergeev,
*Tensor algebra of the identity representation as a module over the Lie superalgebras $\textrm {Gl}(n,\,m)$ and $Q(n)$*, Mat. Sb. (N.S.)**123(165)**(1984), no. 3, 422–430 (Russian). MR**735715** - A. N. Sergeev,
*The centre of enveloping algebra for Lie superalgebra $Q(n,\,\textbf {C})$*, Lett. Math. Phys.**7**(1983), no. 3, 177–179. MR**706205**, DOI 10.1007/BF00400431 - Sergeev A., Irreducible representations of solvable Lie superalgebras, math.RT/9810109.
- T. Venkatarayudu,
*The $7$-$15$ problem*, Proc. Indian Acad. Sci., Sect. A.**9**(1939), 531. MR**0000001**, DOI 10.1090/gsm/058 - Yamaguchi M., A duality of the twisted group algebra of the symmetric group and a Lie superalgebra, math.RT/9811090.
- Yamaguchi M., A duality of the twisted group algebra of the hyperoctaedral group and the queer Lie superalgebra, math.RT/9903159.

## Additional Information

**Alexander Sergeev**- Affiliation: On leave of absence from Balakovo Institute of Technique of Technology and Control, Branch of Saratov State Technical University, Russia; Department of Mathematics, University of Stockholm, Roslagsv. 101, Kräftriket hus 6, S-106 91, Stockholm, Sweden
- Email: mleites@matematik.su.se (subject: for Sergeev)
- Received by editor(s): September 4, 1998
- Received by editor(s) in revised form: September 8, 1999
- Published electronically: November 9, 1999
- Additional Notes: I am thankful to D. Leites for support; to him and the referee for help
- © Copyright 1999 American Mathematical Society
- Journal: Represent. Theory
**3**(1999), 416-434 - MSC (1991): Primary 20C30, 20C25, 17A70
- DOI: https://doi.org/10.1090/S1088-4165-99-00085-0
- MathSciNet review: 1722115