On the equivariant -theory of the nilpotent cone
Author:
Viktor Ostrik
Journal:
Represent. Theory 4 (2000), 296-305
MSC (2000):
Primary 20G05; Secondary 14L30
DOI:
https://doi.org/10.1090/S1088-4165-00-00089-3
Published electronically:
July 31, 2000
MathSciNet review:
1773863
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
In this note we construct a ``Kazhdan-Lusztig type'' basis in equivariant -theory of the nilpotent cone of a simple algebraic group
. This basis conjecturally is very close to the basis of this
-group consisting of irreducible bundles on nilpotent orbits. As a consequence we get a natural (conjectural) construction of Lusztig's bijection between dominant weights and pairs {nilpotent orbit
, irreducible
-bundle on
}.
- 1. Henning Haahr Andersen, Tensor products of quantized tilting modules, Comm. Math. Phys. 149 (1992), no. 1, 149–159. MR 1182414
- 2. Henning Haahr Andersen and Jens Carsten Jantzen, Cohomology of induced representations for algebraic groups, Math. Ann. 269 (1984), no. 4, 487–525. MR 766011, https://doi.org/10.1007/BF01450762
- 3. H. H. Andersen, J. C. Jantzen, and W. Soergel, Representations of quantum groups at a 𝑝th root of unity and of semisimple groups in characteristic 𝑝: independence of 𝑝, Astérisque 220 (1994), 321 (English, with English and French summaries). MR 1272539
- 4. Bram Broer, Line bundles on the cotangent bundle of the flag variety, Invent. Math. 113 (1993), no. 1, 1–20. MR 1223221, https://doi.org/10.1007/BF01244299
- 5. Bram Broer, Normality of some nilpotent varieties and cohomology of line bundles on the cotangent bundle of the flag variety, Lie theory and geometry, Progr. Math., vol. 123, Birkhäuser Boston, Boston, MA, 1994, pp. 1–19. MR 1327529, https://doi.org/10.1007/978-1-4612-0261-5_1
- 6. Abraham Broer, Decomposition varieties in semisimple Lie algebras, Canad. J. Math. 50 (1998), no. 5, 929–971. MR 1650954, https://doi.org/10.4153/CJM-1998-048-6
- 7. Neil Chriss and Victor Ginzburg, Representation theory and complex geometry, Birkhäuser Boston, Inc., Boston, MA, 1997. MR 1433132
- 8. V. Ginzburg, Perverse sheaves on a loop group and Langlands' duality, preprint alg-geom/9511007.
- 9. Victor Ginzburg and Shrawan Kumar, Cohomology of quantum groups at roots of unity, Duke Math. J. 69 (1993), no. 1, 179–198. MR 1201697, https://doi.org/10.1215/S0012-7094-93-06909-8
- 10. William A. Graham, Functions on the universal cover of the principal nilpotent orbit, Invent. Math. 108 (1992), no. 1, 15–27. MR 1156383, https://doi.org/10.1007/BF02100596
- 11. V. Hinich, On the singularities of nilpotent orbits, Israel J. Math. 73 (1991), no. 3, 297–308. MR 1135219, https://doi.org/10.1007/BF02773843
- 12. J. E. Humphreys, Comparing modular representations of semisimple groups and their Lie algebras, Modular interfaces (Riverside, CA, 1995) AMS/IP Stud. Adv. Math., vol. 4, Amer. Math. Soc., Providence, RI, 1997, pp. 69–80. MR 1483904
- 13. George Lusztig, Nonlocal finiteness of a 𝑊-graph, Represent. Theory 1 (1997), approx. 6. MR 1429372, https://doi.org/10.1090/S1088-4165-97-00003-4
- 14.
George
Lusztig, Cells in affine Weyl groups, Algebraic groups and
related topics (Kyoto/Nagoya, 1983) Adv. Stud. Pure Math., vol. 6,
North-Holland, Amsterdam, 1985, pp. 255–287. MR
803338, https://doi.org/10.2969/aspm/00610255
George Lusztig, Cells in affine Weyl groups. II, J. Algebra 109 (1987), no. 2, 536–548. MR 902967, https://doi.org/10.1016/0021-8693(87)90154-2 - 15. G. Lusztig, Bases in equivariant 𝐾-theory, Represent. Theory 2 (1998), 298–369. MR 1637973, https://doi.org/10.1090/S1088-4165-98-00054-5
- 16. William M. McGovern, Rings of regular functions on nilpotent orbits and their covers, Invent. Math. 97 (1989), no. 1, 209–217. MR 999319, https://doi.org/10.1007/BF01850661
- 17. William M. McGovern, A branching law for 𝑆𝑝𝑖𝑛(7,𝐶)→𝐺₂ and its applications to unipotent representations, J. Algebra 130 (1990), no. 1, 166–175. MR 1045742, https://doi.org/10.1016/0021-8693(90)90106-X
- 18. V. Ostrik, Cohomology of subregular tilting modules for small quantum groups, preprint q-alg/9902094.
- 19. D. I. Panyushev, Rationality of singularities and the Gorenstein property of nilpotent orbits, Funktsional. Anal. i Prilozhen. 25 (1991), no. 3, 76–78 (Russian); English transl., Funct. Anal. Appl. 25 (1991), no. 3, 225–226 (1992). MR 1139878, https://doi.org/10.1007/BF01085494
- 20. Wolfgang Soergel, Kazhdan-Lusztig-Polynome und eine Kombinatorik für Kipp-Moduln, Represent. Theory 1 (1997), 37–68 (German, with English summary). MR 1445511, https://doi.org/10.1090/S1088-4165-97-00006-X
Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2000): 20G05, 14L30
Retrieve articles in all journals with MSC (2000): 20G05, 14L30
Additional Information
Viktor Ostrik
Affiliation:
Independent Moscow University, 11 Bolshoj Vlasjevskij per., Moscow 121002 Russia
Email:
ostrik@mccme.ru
DOI:
https://doi.org/10.1090/S1088-4165-00-00089-3
Received by editor(s):
November 16, 1999
Received by editor(s) in revised form:
April 19, 2000
Published electronically:
July 31, 2000
Article copyright:
© Copyright 2000
American Mathematical Society