On the spanning vectors of Lusztig cones
HTML articles powered by AMS MathViewer
- by Robert Bédard
- Represent. Theory 4 (2000), 306-329
- DOI: https://doi.org/10.1090/S1088-4165-00-00090-X
- Published electronically: July 31, 2000
- PDF | Request permission
Abstract:
For each reduced expression ${\mathbf i}$ of the longest element $w_0$ of the Weyl group $W$ of a Dynkin diagram $\Delta$ of type $A$, $D$ or $E$, Lusztig defined a cone ${\mathcal C}_{\mathbf i}$ such that there corresponds a monomial in the quantized enveloping algebra ${\mathbf U}$ of $\Delta$ to each element of ${\mathcal C}_{\mathbf i}$ and he asked under what circumstances these monomials belong to the canonical basis of ${\mathbf U}$. In this paper, we consider the case where ${\mathbf i}$ is a reduced expression adapted to a quiver $\Omega$ whose graph is $\Delta$ and we describe ${\mathcal C}_{\mathbf i}$ as the set of non-negative integral combination of spanning vectors. These spanning vectors are themselves described by using the Auslander-Reiten quiver of $\Omega$ and homological algebra.References
- Maurice Auslander, Relations for Grothendieck groups of Artin algebras, Proc. Amer. Math. Soc. 91 (1984), no. 3, 336–340. MR 744624, DOI 10.1090/S0002-9939-1984-0744624-1
- Nelson Dunford, A mean ergodic theorem, Duke Math. J. 5 (1939), 635–646. MR 98, DOI 10.1017/CBO9780511623608 3 R. Bédard, On commutation classes of reduced words in Weyl groups, European J. Combin. 20 (1999), 483–505. 4 I.N. Bernstein, I.M. Gelfand and V.A. Ponomarev, Coxeter functors and Gabriel’s theorem, Russian Math. Surveys 28 (1973), 17–32. 5 R.W. Carter and R.J. Marsh, Regions of linearity, Lusztig cones and canonical basis elements for the quantized enveloping algebra of type $A_4$, forthcoming paper 1998.
- Peter Gabriel, Unzerlegbare Darstellungen. I, Manuscripta Math. 6 (1972), 71–103; correction, ibid. 6 (1972), 309 (German, with English summary). MR 332887, DOI 10.1007/BF01298413
- Peter Gabriel, Auslander-Reiten sequences and representation-finite algebras, Representation theory, I (Proc. Workshop, Carleton Univ., Ottawa, Ont., 1979), Lecture Notes in Math., vol. 831, Springer, Berlin, 1980, pp. 1–71. MR 607140, DOI 10.1007/BFb0089778
- M. Kashiwara, On crystal bases of the $Q$-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), no. 2, 465–516. MR 1115118, DOI 10.1215/S0012-7094-91-06321-0
- G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), no. 2, 447–498. MR 1035415, DOI 10.1090/S0894-0347-1990-1035415-6
- G. Lusztig, Canonical bases arising from quantized enveloping algebras. II, Progr. Theoret. Phys. Suppl. 102 (1990), 175–201 (1991). Common trends in mathematics and quantum field theories (Kyoto, 1990). MR 1182165, DOI 10.1143/PTPS.102.175
- G. Lusztig, Tight monomials in quantized enveloping algebras, Quantum deformations of algebras and their representations (Ramat-Gan, 1991/1992; Rehovot, 1991/1992) Israel Math. Conf. Proc., vol. 7, Bar-Ilan Univ., Ramat Gan, 1993, pp. 117–132. MR 1261904
- Robert Marsh, More tight monomials in quantized enveloping algebras, J. Algebra 204 (1998), no. 2, 711–732. MR 1624436, DOI 10.1006/jabr.1997.7370 13 R.J. Marsh, The Lusztig cones of a quantized enveloping algebra of type $A$, preprint, 1998. 14 R.J. Marsh, Rectangle diagrams for the Lusztig cones of quantized enveloping algebras of type $A$, preprint, 1998.
- Claus Michael Ringel, On algorithms for solving vector space problems. II. Tame algebras, Representation theory, I (Proc. Workshop, Carleton Univ., Ottawa, Ont., 1979), Lecture Notes in Math., vol. 831, Springer, Berlin, 1980, pp. 137–287. MR 607143, DOI 10.1007/BFb0089781
- Claus Michael Ringel, Tame algebras and integral quadratic forms, Lecture Notes in Mathematics, vol. 1099, Springer-Verlag, Berlin, 1984. MR 774589, DOI 10.1007/BFb0072870
- Jacques Tits, Le problème des mots dans les groupes de Coxeter, Symposia Mathematica (INDAM, Rome, 1967/68) Academic Press, London, 1969, pp. 175–185 (French). MR 0254129, DOI 10.1016/B978-1-4832-2995-9.50013-1
Bibliographic Information
- Robert Bédard
- Affiliation: Département de Mathématiques, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, Québec, H3C 3P8, Canada
- Email: bedard@lacim.uqam.ca
- Received by editor(s): December 2, 1999
- Received by editor(s) in revised form: May 27, 2000
- Published electronically: July 31, 2000
- © Copyright 2000 American Mathematical Society
- Journal: Represent. Theory 4 (2000), 306-329
- MSC (2000): Primary 16G20, 16G70, 17B37
- DOI: https://doi.org/10.1090/S1088-4165-00-00090-X
- MathSciNet review: 1773864