The FischerClifford matrices of a maximal subgroup of $Fi^{\prime }_{24}$
HTML articles powered by AMS MathViewer
 by Faryad Ali and Jamshid Moori PDF
 Represent. Theory 7 (2003), 300321 Request permission
Abstract:
The Fischer group $Fi_{24}^{\prime }$ is the largest sporadic simple Fischer group of order \[ 1255205709190661721292800 = 2^{21}.3^{16}.5^2.7^3.11.13.17.23.29 \;\;.\] The group $Fi_{24}^{\prime }$ is the derived subgroup of the Fischer $3$transposition group $Fi_{24}$ discovered by Bernd Fischer. There are five classes of elements of order 3 in $Fi_{24}^{\prime }$ as represented in ATLAS by $3A$, $3B$, $3C$, $3D$ and $3E$. A subgroup of $Fi_{24}^{\prime }$ of order $3$ is called of type $3X$, where $X \in \{A,B,C,D,E \}$, if it is generated by an element in the class $3X$. There are six classes of maximal 3local subgroups of $Fi_{24}^{\prime }$ as determined by Wilson. In this paper we determine the FischerClifford matrices and conjugacy classes of one of these maximal 3local subgroups $\bar {G} := N_{Fi_{24}^{\prime }}(\langle N\rangle ) \cong 3^7{\cdot }O_7(3)$, where $N \cong 3^7$ is the natural orthogonal module for $\bar {G}/N \cong O_7(3)$ with $364$ subgroups of type $3B$ corresponding to the totally isotropic points. The group $\bar {G}$ is a nonsplit extension of $N$ by $G \cong O_7(3)$.References

Ali F. Ali, FischerClifford Matrices for Split and NonSplit Group Extensions, PhD Thesis, University of Natal, Pietermaritzburg, 2001.
AliMoo1 F. Ali and J. Moori, FischerClifford Matrices of the Group $2^7{:}Sp_6(2)$, In preparation.
AliMoo2 F. Ali and J. Moori, FischerClifford Matricesand Character Table of the Group $2^8{:}Sp_6(2)$, In preparation.
AliMoo3 F. Ali and J. Moori, The FischerClifford Matrices and Character Table of a Maximal Subgroup of $Fi_{24}$ , In preparation.
magma Wieb Bosma and John Cannon. Handbook of Magma Functions, Department of Mathematics, University of Sydney, November 1994.
 J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, $\Bbb {ATLAS}$ of finite groups, Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary characters for simple groups; With computational assistance from J. G. Thackray. MR 827219
 M. R. Darafsheh and A. Iranmanesh, Computation of the character table of affine groups using Fischer matrices, Groups β93 Galway/St. Andrews, Vol. 1 (Galway, 1993) London Math. Soc. Lecture Note Ser., vol. 211, Cambridge Univ. Press, Cambridge, 1995, pp.Β 131β137. MR 1342786, DOI 10.1017/CBO9780511629280.013 Fis1 B. Fischer, Finite Groups Generated by 3Transpositions, Notes, Mathematics Institute, University of Warwick, 1970.
 Bernd Fischer, Cliffordmatrices, Representation theory of finite groups and finitedimensional algebras (Bielefeld, 1991) Progr. Math., vol. 95, BirkhΓ€user, Basel, 1991, pp.Β 1β16. MR 1112155, DOI 10.1007/s1010700203386 Fis3 B. Fischer, Character tables of maximal subgroups of sporadic simple groups III, Preprint. Fis4 B. Fischer, unpublished manuscript (1985).
 P. X. Gallagher, Group characters and normal Hall subgroups, Nagoya Math. J. 21 (1962), 223β230. MR 142671, DOI 10.1017/S0027763000023849
 Patrick X. Gallagher, The number of conjugacy classes in a finite group, Math. Z. 118 (1970), 175β179. MR 276318, DOI 10.1007/BF01113339
 Daniel Gorenstein, Finite groups, Harper & Row, Publishers, New YorkLondon, 1968. MR 0231903
 D. F. Holt, A computer program for the calculation of a covering group of a finite group, J. Pure Appl. Algebra 35 (1985), no.Β 3, 287β295. MR 777260, DOI 10.1016/00224049(85)900465
 I. Martin Isaacs, Character theory of finite groups, Pure and Applied Mathematics, No. 69, Academic Press [Harcourt Brace Jovanovich, Publishers], New YorkLondon, 1976. MR 0460423
 Christoph Jansen, Klaus Lux, Richard Parker, and Robert Wilson, An atlas of Brauer characters, London Mathematical Society Monographs. New Series, vol. 11, The Clarendon Press, Oxford University Press, New York, 1995. Appendix 2 by T. Breuer and S. Norton; Oxford Science Publications. MR 1367961
 Gregory Karpilovsky, Group representations. Vol. 1. Part A, NorthHolland Mathematics Studies, vol. 175, NorthHolland Publishing Co., Amsterdam, 1992. Background material. MR 1183469
 R. J. List, On the characters of $2^{n\epsilon }\cdot S_n$, Arch. Math. (Basel) 51 (1988), no.Β 2, 118β124. MR 959386, DOI 10.1007/BF01206468
 R. J. List and I. M. I. Mahmoud, Fischer matrices for wreath products $G\,w\,S_n$, Arch. Math. (Basel) 50 (1988), no.Β 5, 394β401. MR 942535, DOI 10.1007/BF01196499
 Jamshid Moori and Zwelethemba Mpono, The FischerClifford matrices of the group $2^6\colon \!\textrm {SP}_6(2)$, Quaest. Math. 22 (1999), no.Β 2, 257β298. MR 1728499, DOI 10.1080/16073606.1999.9632080
 Jamshid Moori and Zwelethemba Mpono, The centralizer of an involutory outer automorphism of $F_{22}$, Math. Japon. 49 (1999), no.Β 1, 93β113. MR 1671961, DOI 10.1080/16073606.1999.9632080
 Jamshid Moori and Zwelethemba Mpono, The centralizer of an involutory outer automorphism of $F_{22}$, Math. Japon. 49 (1999), no.Β 1, 93β113. MR 1671961
 Jamshid Moori and Zwelethemba Mpono, FischerClifford matrices and the character table of a maximal subgroup of $\overline F_{22}$, Int. J. Math. Game Theory Algebra 10 (2000), no.Β 1, 1β12. MR 1756359 Mpo Z. E. Mpono, FischerClifford Theory and Character Tables of Group Extensions, PhD thesis, University of Natal, Pietermaritzburg, 1998. NagTsu H. Nagao and Y. Tsushima, Representations of Finite Groups, Academic Press, San Diego, 1987. Sal R. B. Salleh, On the Construction of the Character Tables of Extension Groups, PhD thesis, University of Birmingham, 1982. Sch U. Schiffer, Cliffordmatrizen, Diplomarbeit, Lehrstul D Fur Matematik, RWTH, Aachen, 1995. gap The GAP Group, GAP  Groups, Algorithms and Programming, Version 4.2 , Aachen, St Andrews, 2000, (http://wwwgap.dcs.stand.ac.uk/~gap). Whi N. S. Whitley, Fischer Matrices and Character Tables of Group Extensions, MSc thesis, University of Natal, Pietermaritzburg, 1994.
 Robert A. Wilson, The local subgroups of the Fischer groups, J. London Math. Soc. (2) 36 (1987), no.Β 1, 77β94. MR 897676, DOI 10.1112/jlms/s236.1.77
Additional Information
 Faryad Ali
 Affiliation: School of Mathematics, Statistics and I.T., University of Natal, Private Bag X 01, Scottsville, Pietermaritzburg 3209, South Africa
 ORCID: setImmediate$0.9265022794625328$2
 Jamshid Moori
 Affiliation: School of Mathematics, Statistics and I.T., University of Natal, Private Bag X 01, Scottsville, Pietermaritzburg 3209, South Africa
 Received by editor(s): August 29, 2002
 Received by editor(s) in revised form: April 7, 2003
 Published electronically: July 29, 2003
 Additional Notes: The first author was supported by a postgraduate bursary from the NRF(SA)
The second author was supported by a research grant from University of Natal and NRF(SA)  © Copyright 2003 American Mathematical Society
 Journal: Represent. Theory 7 (2003), 300321
 MSC (2000): Primary 20C15, 20D08, 20E22
 DOI: https://doi.org/10.1090/S1088416503001754
 MathSciNet review: 1993362