The unitary $\mathbb I$–spherical dual for split $p$–adic groups of type $F_4$
HTML articles powered by AMS MathViewer
- by Dan Ciubotaru
- Represent. Theory 9 (2005), 94-137
- DOI: https://doi.org/10.1090/S1088-4165-05-00206-2
- Published electronically: February 1, 2005
- PDF | Request permission
Abstract:
It is known that the determination of the Iwahori-spherical unitary dual for $p$-adic groups can be reduced to the classification of unitary representations with real infinitesimal character for the associated Hecke algebras. In this setting, I determine the Iwahori–spherical unitary dual for split groups of type $F_4$.References
- [A]A D. Alvis Induce/Restrict matrices for exceptional Weyl groups, preprint.
- Dan Barbasch, The spherical dual for $p$-adic groups, Geometry and representation theory of real and $p$-adic groups (Córdoba, 1995) Progr. Math., vol. 158, Birkhäuser Boston, Boston, MA, 1998, pp. 1–19. MR 1486132, DOI 10.1007/s10107-015-0911-4 [B2]B2 —Unitary spherical spectrum for split classical groups (to appear).
- Dan Barbasch, Unipotent representations for real reductive groups, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990) Math. Soc. Japan, Tokyo, 1991, pp. 769–777. MR 1159263
- Dan Barbasch and Allen Moy, A unitarity criterion for $p$-adic groups, Invent. Math. 98 (1989), no. 1, 19–37. MR 1010153, DOI 10.1007/BF01388842
- Dan Barbasch and Allen Moy, Reduction to real infinitesimal character in affine Hecke algebras, J. Amer. Math. Soc. 6 (1993), no. 3, 611–635. MR 1186959, DOI 10.1090/S0894-0347-1993-1186959-0
- Dan Barbasch and Allen Moy, Unitary spherical spectrum for $p$-adic classical groups, Acta Appl. Math. 44 (1996), no. 1-2, 3–37. Representations of Lie groups, Lie algebras and their quantum analogues. MR 1407038, DOI 10.1007/BF00116514
- Armand Borel and Nolan R. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, Annals of Mathematics Studies, No. 94, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1980. MR 554917
- Roger W. Carter, Finite groups of Lie type, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1985. Conjugacy classes and complex characters; A Wiley-Interscience Publication. MR 794307
- Takeshi Kondo, The characters of the Weyl group of type $F_{4}$, J. Fac. Sci. Univ. Tokyo Sect. I 11 (1965), 145–153 (1965). MR 185018
- A. W. Knapp and Gregg Zuckerman, Classification theorems for representations of semisimple Lie groups, Non-commutative harmonic analysis (Actes Colloq., Marseille-Luminy, 1976), Lecture Notes in Math., Vol. 587, Springer, Berlin, 1977, pp. 138–159. MR 0476923, DOI 10.1007/BFb0087919
- Anthony W. Knapp, Representation theory of semisimple groups, Princeton Mathematical Series, vol. 36, Princeton University Press, Princeton, NJ, 1986. An overview based on examples. MR 855239, DOI 10.1515/9781400883974
- David Kazhdan and George Lusztig, Proof of the Deligne-Langlands conjecture for Hecke algebras, Invent. Math. 87 (1987), no. 1, 153–215. MR 862716, DOI 10.1007/BF01389157
- George Lusztig, Affine Hecke algebras and their graded version, J. Amer. Math. Soc. 2 (1989), no. 3, 599–635. MR 991016, DOI 10.1090/S0894-0347-1989-0991016-9
- G. Lusztig, Intersection cohomology complexes on a reductive group, Invent. Math. 75 (1984), no. 2, 205–272. MR 732546, DOI 10.1007/BF01388564
- George Lusztig, Cuspidal local systems and graded Hecke algebras. I, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 145–202. MR 972345, DOI 10.1007/BF02699129
- George Lusztig, Cuspidal local systems and graded Hecke algebras. II, Representations of groups (Banff, AB, 1994) CMS Conf. Proc., vol. 16, Amer. Math. Soc., Providence, RI, 1995, pp. 217–275. With errata for Part I [Inst. Hautes Études Sci. Publ. Math. No. 67 (1988), 145–202; MR0972345 (90e:22029)]. MR 1357201, DOI 10.1090/S1088-4165-02-00172-3
- George Lusztig, Characters of reductive groups over a finite field, Annals of Mathematics Studies, vol. 107, Princeton University Press, Princeton, NJ, 1984. MR 742472, DOI 10.1515/9781400881772
- Goran Muić, The unitary dual of $p$-adic $G_2$, Duke Math. J. 90 (1997), no. 3, 465–493. MR 1480543, DOI 10.1215/S0012-7094-97-09012-8
- Marko Tadić, Classification of unitary representations in irreducible representations of general linear group (non-Archimedean case), Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 3, 335–382. MR 870688, DOI 10.24033/asens.1510
- David A. Vogan Jr., The unitary dual of $G_2$, Invent. Math. 116 (1994), no. 1-3, 677–791. MR 1253210, DOI 10.1007/BF01231578 [V2]V2 —Computing the unitary dual, notes at atlas.math.umd.edu/papers
Bibliographic Information
- Dan Ciubotaru
- Affiliation: Department of Mathematics, Cornell University, Ithaca, New York 14853
- Address at time of publication: Massachusetts Institute of Technology, Department of Mathematics, Room 2-180, Cambridge, Massachusetts 02139
- MR Author ID: 754534
- Email: ciubo@math.mit.edu
- Received by editor(s): August 21, 2003
- Received by editor(s) in revised form: September 21, 2004
- Published electronically: February 1, 2005
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory 9 (2005), 94-137
- MSC (2000): Primary 22E50
- DOI: https://doi.org/10.1090/S1088-4165-05-00206-2
- MathSciNet review: 2123126