Skip to Main Content

Representation Theory

Published by the American Mathematical Society, the Representation Theory (ERT) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-4165

The 2020 MCQ for Representation Theory is 0.7.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Quantum algebras and symplectic reflection algebras for wreath products
HTML articles powered by AMS MathViewer

by Nicolas Guay PDF
Represent. Theory 14 (2010), 148-200 Request permission

Abstract:

To a finite subgroup $\Gamma$ of $SL_2(\mathbb {C})$, we associate a new family of quantum algebras which are related to symplectic reflection algebras for wreath products $S_l\wr \Gamma$ via a functor of Schur-Weyl type. We explain that they are deformations of matrix algebras over rank-one symplectic reflection algebras for $\Gamma$ and construct for them a PBW basis. When $\Gamma$ is a cyclic group, we are able to give more information about their structure and to relate them to Yangians.
References
Similar Articles
  • Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2010): 17B37, 20C08
  • Retrieve articles in all journals with MSC (2010): 17B37, 20C08
Additional Information
  • Nicolas Guay
  • Affiliation: Department of Mathematical and Statistical Sciences, University of Alberta, CAB 632, Edmonton, Alberta T6G 2G1, Canada
  • Email: nguay@math.ualberta.ca
  • Received by editor(s): October 19, 2007
  • Received by editor(s) in revised form: September 29, 2009
  • Published electronically: February 9, 2010
  • © Copyright 2010 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.
  • Journal: Represent. Theory 14 (2010), 148-200
  • MSC (2010): Primary 17B37; Secondary 20C08
  • DOI: https://doi.org/10.1090/S1088-4165-10-00366-3
  • MathSciNet review: 2593918