## Pieces of nilpotent cones for classical groups

HTML articles powered by AMS MathViewer

- by Pramod N. Achar, Anthony Henderson and Eric Sommers
- Represent. Theory
**15**(2011), 584-616 - DOI: https://doi.org/10.1090/S1088-4165-2011-00393-9
- Published electronically: August 22, 2011
- PDF | Request permission

## Abstract:

We compare orbits in the nilpotent cone of type $B_n$, that of type $C_n$, and Kato’s exotic nilpotent cone. We prove that the number of $\mathbb {F}_q$-points in each nilpotent orbit of type $B_n$ or $C_n$ equals that in a corresponding union of orbits, called a type-$B$ or type-$C$ piece, in the exotic nilpotent cone. This is a finer version of Lusztig’s result where corresponding special pieces in types $B_n$ and $C_n$ have the same number of $\mathbb {F}_q$-points. The proof requires studying the case of characteristic $2$, where more direct connections between the three nilpotent cones can be established. We also prove that the type-$B$ and type-$C$ pieces of the exotic nilpotent cone are smooth in any characteristic.## References

- Pramod N. Achar and Anthony Henderson,
*Orbit closures in the enhanced nilpotent cone*, Adv. Math.**219**(2008), no. 1, 27–62. MR**2435419**, DOI 10.1016/j.aim.2008.04.008 - Roger W. Carter,
*Finite groups of Lie type*, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1985. Conjugacy classes and complex characters; A Wiley-Interscience Publication. MR**794307** - David H. Collingwood and William M. McGovern,
*Nilpotent orbits in semisimple Lie algebras*, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993. MR**1251060** - Meinolf Geck and Götz Pfeiffer,
*Characters of finite Coxeter groups and Iwahori-Hecke algebras*, London Mathematical Society Monographs. New Series, vol. 21, The Clarendon Press, Oxford University Press, New York, 2000. MR**1778802** - R. Groszer,
*Degenerationsverhalten nilpotenter Konjugationsklassen klassischer Lie-Algebren in Charakteristic*2, dissertation, Bonn 1980. - Wim H. Hesselink,
*Nilpotency in classical groups over a field of characteristic $2$*, Math. Z.**166**(1979), no. 2, 165–181. MR**525621**, DOI 10.1007/BF01214043 - Syu Kato,
*An exotic Deligne-Langlands correspondence for symplectic groups*, Duke Math. J.**148**(2009), no. 2, 305–371. MR**2524498**, DOI 10.1215/00127094-2009-028 - —,
*Deformations of nilpotent cones and Springer correspondences*, Amer. J. Math.**133**(2011), no. 2, 519–553. MR**2797355** - Hanspeter Kraft and Claudio Procesi,
*A special decomposition of the nilpotent cone of a classical Lie algebra*, Astérisque**173-174**(1989), 10, 271–279. Orbites unipotentes et représentations, III. MR**1021514** - G. Lusztig,
*Green polynomials and singularities of unipotent classes*, Adv. in Math.**42**(1981), no. 2, 169–178. MR**641425**, DOI 10.1016/0001-8708(81)90038-4 - George Lusztig,
*Character sheaves. V*, Adv. in Math.**61**(1986), no. 2, 103–155. MR**849848**, DOI 10.1016/0001-8708(86)90071-X - G. Lusztig,
*Notes on unipotent classes*, Asian J. Math.**1**(1997), no. 1, 194–207. MR**1480994**, DOI 10.4310/AJM.1997.v1.n1.a7 - G. Lusztig,
*Unipotent elements in small characteristic*, Transform. Groups**10**(2005), no. 3-4, 449–487. MR**2183120**, DOI 10.1007/s00031-005-0405-1 - G. Lusztig,
*Unipotent elements in small characteristic. II*, Transform. Groups**13**(2008), no. 3-4, 773–797. MR**2452615**, DOI 10.1007/s00031-008-9021-1 - —,
*Unipotent elements in small characteristic III*, with an appendix by G. Lusztig and T. Xue, J. Algebra**329**(2011), 163–189. doi:10.1016/j.jalgebra.2009.12.008, MR**2769321** - I. G. Macdonald,
*Symmetric functions and Hall polynomials*, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR**1354144** - Toshiaki Shoji,
*On the Springer representations of the Weyl groups of classical algebraic groups*, Comm. Algebra**7**(1979), no. 16, 1713–1745. MR**546195**, DOI 10.1080/00927877908822425 - T. Shoji,
*On the Green polynomials of classical groups*, Invent. Math.**74**(1983), no. 2, 239–267. MR**723216**, DOI 10.1007/BF01394315 - Toshiaki Shoji,
*Green functions attached to limit symbols*, Representation theory of algebraic groups and quantum groups, Adv. Stud. Pure Math., vol. 40, Math. Soc. Japan, Tokyo, 2004, pp. 443–467. MR**2074601**, DOI 10.2969/aspm/04010443 - Nicolas Spaltenstein,
*Classes unipotentes et sous-groupes de Borel*, Lecture Notes in Mathematics, vol. 946, Springer-Verlag, Berlin-New York, 1982 (French). MR**672610**, DOI 10.1007/BFb0096302 - Nicolas Spaltenstein,
*Nilpotent classes and sheets of Lie algebras in bad characteristic*, Math. Z.**181**(1982), no. 1, 31–48. MR**671712**, DOI 10.1007/BF01214979 - T. A. Springer,
*Linear algebraic groups*, 2nd ed., Progress in Mathematics, vol. 9, Birkhäuser Boston, Inc., Boston, MA, 1998. MR**1642713**, DOI 10.1007/978-0-8176-4840-4 - T. A. Springer,
*The exotic nilcone of a symplectic group*, J. Algebra**321**(2009), no. 11, 3550–3562. MR**2510061**, DOI 10.1016/j.jalgebra.2008.08.013 - M. Sun,
*Point stabilisers for the enhanced and exotic nilpotent cones*, to appear in J. Group Theory, arXiv:0909.0356v3. - Ting Xue,
*Nilpotent orbits in classical Lie algebras over finite fields of characteristic 2 and the Springer correspondence*, Represent. Theory**13**(2009), 371–390. MR**2540701**, DOI 10.1090/S1088-4165-09-00357-4 - —,
*Combinatorics of the Springer correspondence for classical Lie algebras and their duals in characteristic $2$*, arXiv:0911.1350v1. - —,
*On unipotent and nilpotent pieces*, arXiv:0912.3820v1.

## Bibliographic Information

**Pramod N. Achar**- Affiliation: Department of Mathematics, Louisiana State University, Baton Rouge, Louisianna 70803-4918
- MR Author ID: 701892
- Email: pramod@math.lsu.edu
**Anthony Henderson**- Affiliation: School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia
- MR Author ID: 687061
- ORCID: 0000-0002-3965-7259
- Email: anthony.henderson@sydney.edu.au
**Eric Sommers**- Affiliation: Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003-4515
- Email: esommers@math.umass.edu
- Received by editor(s): January 24, 2010
- Received by editor(s) in revised form: June 30, 2010
- Published electronically: August 22, 2011
- Additional Notes: The first author’s research was supported by Louisiana Board of Regents grant NSF(2008)-LINK-35 and by National Security Agency grant H98230-09-1-0024.

The second author’s research was supported by Australian Research Council grant DP0985184. - © Copyright 2011
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory
**15**(2011), 584-616 - MSC (2010): Primary 17B08, 20G15; Secondary 14L30
- DOI: https://doi.org/10.1090/S1088-4165-2011-00393-9
- MathSciNet review: 2833469