A geometric construction of types for the smooth representations of PGL(2) over a local field
HTML articles powered by AMS MathViewer
- by Paul Broussous
- Represent. Theory 17 (2013), 508-523
- DOI: https://doi.org/10.1090/S1088-4165-2013-00441-7
- Published electronically: October 4, 2013
- PDF | Request permission
Abstract:
We show that almost all (Bushnell and Kutzko) types of $\textrm {PGL}(2,F)$, $F$ a non-Archimedean locally compact field of odd residue characteristic, naturally appear in the cohomology of finite graphs.References
- Paul Broussous, Minimal strata for $\textrm {GL}(m,D)$, J. Reine Angew. Math. 514 (1999), 199–236. MR 1711267, DOI 10.1515/crll.1999.071
- Paul Broussous, Simplicial complexes lying equivariantly over the affine building of $\textrm {GL}(N)$, Math. Ann. 329 (2004), no. 3, 495–511. MR 2127987, DOI 10.1007/s00208-004-0516-3
- Paul Broussous, Representations of $\textrm {PGL}(2)$ of a local field and harmonic cochains on graphs, Ann. Fac. Sci. Toulouse Math. (6) 18 (2009), no. 3, 495–513 (English, with English and French summaries). MR 2582439
- Colin J. Bushnell and Guy Henniart, The local Langlands conjecture for $\rm GL(2)$, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 335, Springer-Verlag, Berlin, 2006. MR 2234120, DOI 10.1007/3-540-31511-X
- Colin J. Bushnell and Philip C. Kutzko, The admissible dual of $\textrm {GL}(N)$ via compact open subgroups, Annals of Mathematics Studies, vol. 129, Princeton University Press, Princeton, NJ, 1993. MR 1204652, DOI 10.1515/9781400882496
- Colin J. Bushnell and Philip C. Kutzko, Smooth representations of reductive $p$-adic groups: structure theory via types, Proc. London Math. Soc. (3) 77 (1998), no. 3, 582–634. MR 1643417, DOI 10.1112/S0024611598000574
- Armand Borel and Jean-Pierre Serre, Cohomologie à supports compacts des immeubles de Bruhat-Tits; applications à la cohomologie des groupes $S$-arithmétiques, C. R. Acad. Sci. Paris Sér. A-B 272 (1971), A110–A113 (French). MR 274456
- H. Carayol, Représentations cuspidales du groupe linéaire, Ann. Sci. École Norm. Sup. (4) 17 (1984), no. 2, 191–225 (French). MR 760676, DOI 10.24033/asens.1470
- G. Henniart, Sur l’unicité des types pour $\textrm {GL}_2$, appendix to Multiplicité modulaires et représentations de $\textrm {GL}(2,{\mathbb Z}_p )$ et $\textrm {Gal}({\bar {\mathbb Q}}_p/{\mathbb Q}_p)$ en $l=p$, by C. Breuil and A. Mézard.
- P. C. Kutzko, On the supercuspidal representations of $\textrm {Gl}_{2}$, Amer. J. Math. 100 (1978), no. 1, 43–60. MR 507253, DOI 10.2307/2373875
- Alan Roche, Types and Hecke algebras for principal series representations of split reductive $p$-adic groups, Ann. Sci. École Norm. Sup. (4) 31 (1998), no. 3, 361–413 (English, with English and French summaries). MR 1621409, DOI 10.1016/S0012-9593(98)80139-0
Bibliographic Information
- Paul Broussous
- Affiliation: Département de Mathématiques, Université de Poitiers, Téléport 2 - BP 30179, Boulevard Marie et Pierre Curie, 86962 Futuroscope Chasseneuil Cedex, France
- Email: paul.broussous@math.univ-poitiers.fr
- Received by editor(s): March 26, 2012
- Received by editor(s) in revised form: April 17, 2013
- Published electronically: October 4, 2013
- Additional Notes: The author wants to thanks the anonymous referee whose remarks helped him to improve the presentation of this article
- © Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory 17 (2013), 508-523
- MSC (2010): Primary 22E50; Secondary 20J05
- DOI: https://doi.org/10.1090/S1088-4165-2013-00441-7
- MathSciNet review: 3110480
Dedicated: Dedicated to Guy Henniart on his 60th birthday