## Hecke modules based on involutions in extended Weyl groups

HTML articles powered by AMS MathViewer

- by G. Lusztig
- Represent. Theory
**22**(2018), 246-277 - DOI: https://doi.org/10.1090/ert/520
- Published electronically: December 20, 2018
- PDF | Request permission

## Abstract:

Let $X$ be the group of weights of a maximal torus of a simply connected semisimple group over $\mathbf {C}$ and let $W$ be the Weyl group. The semidirect product $W((\mathbf {Q}\otimes X)/X)$ is called an extended Weyl group. There is a natural $\mathbf {C}(v)$-algebra $\mathbf {H}$ called the extended Hecke algebra with basis indexed by the extended Weyl group which contains the usual Hecke algebra as a subalgebra. We construct an $\mathbf {H}$-module with basis indexed by the involutions in the extended Weyl group. This generalizes a construction of the author and Vogan.## References

- Serge Lang,
*Algebraic groups over finite fields*, Amer. J. Math.**78**(1956), 555–563. MR**86367**, DOI 10.2307/2372673 - George Lusztig,
*Introduction to quantum groups*, Modern Birkhäuser Classics, Birkhäuser/Springer, New York, 2010. Reprint of the 1994 edition. MR**2759715**, DOI 10.1007/978-0-8176-4717-9 - G. Lusztig,
*Character sheaves on disconnected groups. VII*, Represent. Theory**9**(2005), 209–266. MR**2133758**, DOI 10.1090/S1088-4165-05-00278-5 - G. Lusztig,
*A bar operator for involutions in a Coxeter group*, Bull. Inst. Math. Acad. Sin. (N.S.)**7**(2012), no. 3, 355–404. MR**3051318** - G.Lusztig,
*Conjugacy classes in reductive groups and two sided cells*, Bull. Inst. Math. Acad. Sinica (N.S.), arXiv:1706.02389 (2017) (to appear). - G. Lusztig,
*Lifting involutions in a Weyl group to the torus normalizer*, Represent. Theory**22**(2018), 27–44. MR**3789878**, DOI 10.1090/ert/513 - George Lusztig and David A. Vogan Jr.,
*Hecke algebras and involutions in Weyl groups*, Bull. Inst. Math. Acad. Sin. (N.S.)**7**(2012), no. 3, 323–354. MR**3051317** - J. G. M. Mars and T. A. Springer,
*Character sheaves*, Astérisque**173-174**(1989), 9, 111–198. Orbites unipotentes et représentations, III. MR**1021511** - J. Tits,
*Normalisateurs de tores. I. Groupes de Coxeter étendus*, J. Algebra**4**(1966), 96–116 (French). MR**206117**, DOI 10.1016/0021-8693(66)90053-6 - Takeo Yokonuma,
*Sur la structure des anneaux de Hecke d’un groupe de Chevalley fini*, C. R. Acad. Sci. Paris Sér. A-B**264**(1967), A344–A347 (French). MR**218467**

## Bibliographic Information

**G. Lusztig**- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- MR Author ID: 117100
- Email: gyuri@mit.edu
- Received by editor(s): November 8, 2017
- Received by editor(s) in revised form: October 5, 2018
- Published electronically: December 20, 2018
- Additional Notes: This research was supported by NSF grant DMS-1566618.
- © Copyright 2018 American Mathematical Society
- Journal: Represent. Theory
**22**(2018), 246-277 - MSC (2010): Primary 20G99, 33D80
- DOI: https://doi.org/10.1090/ert/520
- MathSciNet review: 3892873