Hecke modules based on involutions in extended Weyl groups
HTML articles powered by AMS MathViewer
- by G. Lusztig
- Represent. Theory 22 (2018), 246-277
- DOI: https://doi.org/10.1090/ert/520
- Published electronically: December 20, 2018
- PDF | Request permission
Abstract:
Let $X$ be the group of weights of a maximal torus of a simply connected semisimple group over $\mathbf {C}$ and let $W$ be the Weyl group. The semidirect product $W((\mathbf {Q}\otimes X)/X)$ is called an extended Weyl group. There is a natural $\mathbf {C}(v)$-algebra $\mathbf {H}$ called the extended Hecke algebra with basis indexed by the extended Weyl group which contains the usual Hecke algebra as a subalgebra. We construct an $\mathbf {H}$-module with basis indexed by the involutions in the extended Weyl group. This generalizes a construction of the author and Vogan.References
- Serge Lang, Algebraic groups over finite fields, Amer. J. Math. 78 (1956), 555–563. MR 86367, DOI 10.2307/2372673
- George Lusztig, Introduction to quantum groups, Modern Birkhäuser Classics, Birkhäuser/Springer, New York, 2010. Reprint of the 1994 edition. MR 2759715, DOI 10.1007/978-0-8176-4717-9
- G. Lusztig, Character sheaves on disconnected groups. VII, Represent. Theory 9 (2005), 209–266. MR 2133758, DOI 10.1090/S1088-4165-05-00278-5
- G. Lusztig, A bar operator for involutions in a Coxeter group, Bull. Inst. Math. Acad. Sin. (N.S.) 7 (2012), no. 3, 355–404. MR 3051318
- G.Lusztig, Conjugacy classes in reductive groups and two sided cells, Bull. Inst. Math. Acad. Sinica (N.S.), arXiv:1706.02389 (2017) (to appear).
- G. Lusztig, Lifting involutions in a Weyl group to the torus normalizer, Represent. Theory 22 (2018), 27–44. MR 3789878, DOI 10.1090/ert/513
- George Lusztig and David A. Vogan Jr., Hecke algebras and involutions in Weyl groups, Bull. Inst. Math. Acad. Sin. (N.S.) 7 (2012), no. 3, 323–354. MR 3051317
- J. G. M. Mars and T. A. Springer, Character sheaves, Astérisque 173-174 (1989), 9, 111–198. Orbites unipotentes et représentations, III. MR 1021511
- J. Tits, Normalisateurs de tores. I. Groupes de Coxeter étendus, J. Algebra 4 (1966), 96–116 (French). MR 206117, DOI 10.1016/0021-8693(66)90053-6
- Takeo Yokonuma, Sur la structure des anneaux de Hecke d’un groupe de Chevalley fini, C. R. Acad. Sci. Paris Sér. A-B 264 (1967), A344–A347 (French). MR 218467
Bibliographic Information
- G. Lusztig
- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- MR Author ID: 117100
- Email: gyuri@mit.edu
- Received by editor(s): November 8, 2017
- Received by editor(s) in revised form: October 5, 2018
- Published electronically: December 20, 2018
- Additional Notes: This research was supported by NSF grant DMS-1566618.
- © Copyright 2018 American Mathematical Society
- Journal: Represent. Theory 22 (2018), 246-277
- MSC (2010): Primary 20G99, 33D80
- DOI: https://doi.org/10.1090/ert/520
- MathSciNet review: 3892873