## Partial flag manifolds over a semifield

HTML articles powered by AMS MathViewer

- by G. Lusztig PDF
- Represent. Theory
**24**(2020), 397-402 Request permission

## Abstract:

For any semifield $K$ we define a $K$-form of a partial flag manifold of a semisimple group of simply laced type over the complex numbers.## References

- Devra Garfinkle,
*A NEW CONSTRUCTION OF THE JOSEPH IDEAL*, ProQuest LLC, Ann Arbor, MI, 1982. Thesis (Ph.D.)–Massachusetts Institute of Technology. MR**2941017** - George Lusztig,
*Introduction to quantum groups*, Progress in Mathematics, vol. 110, Birkhäuser Boston, Inc., Boston, MA, 1993. MR**1227098** - G. Lusztig,
*Total positivity in reductive groups*, Lie theory and geometry, Progr. Math., vol. 123, Birkhäuser Boston, Boston, MA, 1994, pp. 531–568. MR**1327548**, DOI 10.1007/978-1-4612-0261-5_{2}0 - G. Lusztig,
*Total positivity in partial flag manifolds*, Represent. Theory**2**(1998), 70–78. MR**1606402**, DOI 10.1090/S1088-4165-98-00046-6 - G. Lusztig,
*Total positivity in reductive groups, II*, Bull. Inst. Math. Acad. Sin. (N.S.)**14**(2019), no. 4, 403–459. MR**4054343**, DOI 10.21915/bimas.2019402 - G. Lusztig,
*Total positivity in reductive groups, II*, Bull. Inst. Math. Acad. Sin. (N.S.)**14**(2019), no. 4, 403–459. MR**4054343**, DOI 10.21915/bimas.2019402 - G. Lusztig,
*The flag manifold over the semifield $\mathbf {Z}$*, arXiv:1912.13329. - Richard Marcuson,
*Tits’ systems in generalized nonadjoint Chevalley groups*, J. Algebra**34**(1975), 84–96. MR**399295**, DOI 10.1016/0021-8693(75)90195-7 - R. V. Moody and K. L. Teo,
*Tits’ systems with crystallographic Weyl groups*, J. Algebra**21**(1972), 178–190. MR**320165**, DOI 10.1016/0021-8693(72)90016-6 - Dale H. Peterson and Victor G. Kac,
*Infinite flag varieties and conjugacy theorems*, Proc. Nat. Acad. Sci. U.S.A.**80**(1983), no. 6, i, 1778–1782. MR**699439**, DOI 10.1073/pnas.80.6.1778 - David Speyer and Lauren Williams,
*The tropical totally positive Grassmannian*, J. Algebraic Combin.**22**(2005), no. 2, 189–210. MR**2164397**, DOI 10.1007/s10801-005-2513-3 - Mogens Esrom Larsen,
*Summa summarum*, CMS Treatises in Mathematics, Canadian Mathematical Society, Ottawa, ON; A K Peters, Ltd., Wellesley, MA, 2007. [Author name on title page: Morgens Esrom Larsen]. MR**2346609**, DOI 10.1201/b10582 - J. Tits,
*Resumé de cours*, Annuaire Collège de France**81**(1980-81), 75-87.

## Additional Information

**G. Lusztig**- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- MR Author ID: 117100
- Email: gyuri@mit.edu
- Received by editor(s): February 21, 2020
- Received by editor(s) in revised form: June 24, 2020
- Published electronically: August 26, 2020
- Additional Notes: The author was supported by NSF grant DMS-1855773.
- © Copyright 2020 American Mathematical Society
- Journal: Represent. Theory
**24**(2020), 397-402 - MSC (2010): Primary 20G99
- DOI: https://doi.org/10.1090/ert/547
- MathSciNet review: 4139899