Partial flag manifolds over a semifield
HTML articles powered by AMS MathViewer
- by G. Lusztig
- Represent. Theory 24 (2020), 397-402
- DOI: https://doi.org/10.1090/ert/547
- Published electronically: August 26, 2020
- PDF | Request permission
Abstract:
For any semifield $K$ we define a $K$-form of a partial flag manifold of a semisimple group of simply laced type over the complex numbers.References
- Devra Garfinkle, A NEW CONSTRUCTION OF THE JOSEPH IDEAL, ProQuest LLC, Ann Arbor, MI, 1982. Thesis (Ph.D.)–Massachusetts Institute of Technology. MR 2941017
- George Lusztig, Introduction to quantum groups, Progress in Mathematics, vol. 110, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1227098
- G. Lusztig, Total positivity in reductive groups, Lie theory and geometry, Progr. Math., vol. 123, Birkhäuser Boston, Boston, MA, 1994, pp. 531–568. MR 1327548, DOI 10.1007/978-1-4612-0261-5_{2}0
- G. Lusztig, Total positivity in partial flag manifolds, Represent. Theory 2 (1998), 70–78. MR 1606402, DOI 10.1090/S1088-4165-98-00046-6
- G. Lusztig, Total positivity in reductive groups, II, Bull. Inst. Math. Acad. Sin. (N.S.) 14 (2019), no. 4, 403–459. MR 4054343, DOI 10.21915/bimas.2019402
- G. Lusztig, Total positivity in reductive groups, II, Bull. Inst. Math. Acad. Sin. (N.S.) 14 (2019), no. 4, 403–459. MR 4054343, DOI 10.21915/bimas.2019402
- G. Lusztig, The flag manifold over the semifield $\mathbf {Z}$, arXiv:1912.13329.
- Richard Marcuson, Tits’ systems in generalized nonadjoint Chevalley groups, J. Algebra 34 (1975), 84–96. MR 399295, DOI 10.1016/0021-8693(75)90195-7
- R. V. Moody and K. L. Teo, Tits’ systems with crystallographic Weyl groups, J. Algebra 21 (1972), 178–190. MR 320165, DOI 10.1016/0021-8693(72)90016-6
- Dale H. Peterson and Victor G. Kac, Infinite flag varieties and conjugacy theorems, Proc. Nat. Acad. Sci. U.S.A. 80 (1983), no. 6, i, 1778–1782. MR 699439, DOI 10.1073/pnas.80.6.1778
- David Speyer and Lauren Williams, The tropical totally positive Grassmannian, J. Algebraic Combin. 22 (2005), no. 2, 189–210. MR 2164397, DOI 10.1007/s10801-005-2513-3
- Mogens Esrom Larsen, Summa summarum, CMS Treatises in Mathematics, Canadian Mathematical Society, Ottawa, ON; A K Peters, Ltd., Wellesley, MA, 2007. [Author name on title page: Morgens Esrom Larsen]. MR 2346609, DOI 10.1201/b10582
- J. Tits, Resumé de cours, Annuaire Collège de France 81 (1980-81), 75-87.
Bibliographic Information
- G. Lusztig
- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- MR Author ID: 117100
- Email: gyuri@mit.edu
- Received by editor(s): February 21, 2020
- Received by editor(s) in revised form: June 24, 2020
- Published electronically: August 26, 2020
- Additional Notes: The author was supported by NSF grant DMS-1855773.
- © Copyright 2020 American Mathematical Society
- Journal: Represent. Theory 24 (2020), 397-402
- MSC (2010): Primary 20G99
- DOI: https://doi.org/10.1090/ert/547
- MathSciNet review: 4139899