Description of unitary representations of the group of infinite $p$-adic integer matrices
HTML articles powered by AMS MathViewer
- by Yury A. Neretin
- Represent. Theory 25 (2021), 606-643
- DOI: https://doi.org/10.1090/ert/577
- Published electronically: July 19, 2021
- PDF | Request permission
Abstract:
We classify irreducible unitary representations of the group of all infinite matrices over a $p$-adic field ($p\ne 2$) with integer elements equipped with a natural topology. Any irreducible representation passes through a group $GL$ of infinite matrices over a residue ring modulo $p^k$. Irreducible representations of the latter group are induced from finite-dimensional representations of certain open subgroups.References
- David J. Aldous, Exchangeability and related topics, École d’été de probabilités de Saint-Flour, XIII—1983, Lecture Notes in Math., vol. 1117, Springer, Berlin, 1985, pp. 1–198. MR 883646, DOI 10.1007/BFb0099421
- Itaï Ben Yaacov, Tomás Ibarlucía, and Todor Tsankov, Eberlein oligomorphic groups, Trans. Amer. Math. Soc. 370 (2018), no. 3, 2181–2209. MR 3739206, DOI 10.1090/tran/7227
- Alexei Borodin and Grigori Olshanski, Harmonic analysis on the infinite-dimensional unitary group and determinantal point processes, Ann. of Math. (2) 161 (2005), no. 3, 1319–1422. MR 2180403, DOI 10.4007/annals.2005.161.1319
- Alexander I. Bufetov and Yanqi Qiu, Ergodic measures on spaces of infinite matrices over non-Archimedean locally compact fields, Compos. Math. 153 (2017), no. 12, 2482–2533. MR 3705296, DOI 10.1112/S0010437X17007412
- Peter J. Cameron, Oligomorphic permutation groups, London Mathematical Society Lecture Note Series, vol. 152, Cambridge University Press, Cambridge, 1990. MR 1066691, DOI 10.1017/CBO9780511549809
- A. H. Clifford and G. B. Preston, The algebraic theory of semigroups. Vol. I, Mathematical Surveys, No. 7, American Mathematical Society, Providence, R.I., 1961. MR 0132791
- N. M. Dobrovol′skaja and V. A. Ponomarev, A pair of counter-operators, Uspehi Mat. Nauk 20 (1965), no. 6, 81–86 (Russian). MR 0219551
- A. V. Dudko, Tame representations of the group $\textrm {GL}(\infty ,{\Bbb F}_q)$, Algebra i Analiz 18 (2006), no. 2, 57–79 (Russian); English transl., St. Petersburg Math. J. 18 (2007), no. 2, 223–239. MR 2244936, DOI 10.1090/S1061-0022-07-00949-1
- F. R. Gantmacher, The theory of matrices. Vol. 1, AMS Chelsea Publishing, Providence, RI, 1998. Translated from the Russian by K. A. Hirsch; Reprint of the 1959 translation. MR 1657129
- Olexandr Ganyushkin, Volodymyr Mazorchuk, and Benjamin Steinberg, On the irreducible representations of a finite semigroup, Proc. Amer. Math. Soc. 137 (2009), no. 11, 3585–3592. MR 2529864, DOI 10.1090/S0002-9939-09-09857-8
- R. A. Horn and V. V. Sergeichuk, Representations of quivers and mixed graphs, Chapter 34 in: L. Hogben (Ed.), Handbook of linear algebra, 2nd ed., Chapman and Hall, CRC, Boca Raton, FL, 2014.
- J. Kastl, Inverse categories, Algebraische Modelle, Kategorien und Gruppoide, Stud. Algebra Anwendungen, vol. 7, Akademie-Verlag, Berlin, 1979, pp. 51–60. MR 569574
- Alexander S. Kechris and Christian Rosendal, Turbulence, amalgamation, and generic automorphisms of homogeneous structures, Proc. Lond. Math. Soc. (3) 94 (2007), no. 2, 302–350. MR 2308230, DOI 10.1112/plms/pdl007
- Sergei Kerov, Grigori Olshanski, and Anatoly Vershik, Harmonic analysis on the infinite symmetric group, Invent. Math. 158 (2004), no. 3, 551–642. MR 2104794, DOI 10.1007/s00222-004-0381-4
- A. A. Kirillov, Elements of the theory of representations, Grundlehren der Mathematischen Wissenschaften, Band 220, Springer-Verlag, Berlin-New York, 1976. Translated from the Russian by Edwin Hewitt. MR 0412321, DOI 10.1007/978-3-642-66243-0
- A. G. Kurosh, Obshchaya algebra, Izdat. “Nauka”, Moscow, 1974 (Russian). Lectures for the academic year 1969–1970; Edited by T. M. Baranovič. MR 0392756
- Mark V. Lawson, Inverse semigroups, World Scientific Publishing Co., Inc., River Edge, NJ, 1998. The theory of partial symmetries. MR 1694900, DOI 10.1142/9789812816689
- Maxim Nazarov, Oscillator semigroup over a non-Archimedean field, J. Funct. Anal. 128 (1995), no. 2, 384–438. MR 1319962, DOI 10.1006/jfan.1995.1037
- Maxime Nazarov, Yuriĭ Neretin, and Grigoriĭ Olshanskiĭ, Semi-groupes engendrés par la représentation de Weil du groupe symplectique de dimension infinie, C. R. Acad. Sci. Paris Sér. I Math. 309 (1989), no. 7, 443–446 (French, with English summary). MR 1055455
- Yu. A. Neretin, Categories of symmetries and infinite-dimensional groups, London Mathematical Society Monographs. New Series, vol. 16, The Clarendon Press, Oxford University Press, New York, 1996. Translated from the Russian by G. G. Gould; Oxford Science Publications. MR 1418863
- Yurii A. Neretin, Hua-type integrals over unitary groups and over projective limits of unitary groups, Duke Math. J. 114 (2002), no. 2, 239–266. MR 1920189, DOI 10.1215/S0012-7094-02-11423-9
- Yurii A. Neretin, Lectures on Gaussian integral operators and classical groups, EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich, 2011. MR 2790054, DOI 10.4171/080
- Yu. A. Neretin, Sphericity and multiplication of double cosets for infinite-dimensional classical groups, Funktsional. Anal. i Prilozhen. 45 (2011), no. 3, 79–96 (Russian, with Russian summary); English transl., Funct. Anal. Appl. 45 (2011), no. 3, 225–239. MR 2883240, DOI 10.1007/s10688-011-0025-6
- Yu. A. Neretin, Hua measures on the space of $p$-adic matrices and inverse limits of Grassmannians, Izv. Ross. Akad. Nauk Ser. Mat. 77 (2013), no. 5, 95–108 (Russian, with Russian summary); English transl., Izv. Math. 77 (2013), no. 5, 941–953. MR 3137196, DOI 10.1070/im2013v077n05abeh002665
- Yu. A. Neretin, Infinite-dimensional $p$-adic groups, semigroups of double cosets, and inner functions on Bruhat-Tits buildings, Izv. Ross. Akad. Nauk Ser. Mat. 79 (2015), no. 3, 87–130 (Russian, with Russian summary); English transl., Izv. Math. 79 (2015), no. 3, 512–553. MR 3397413, DOI 10.4213/im8299
- Yu. A. Neretin, Infinite symmetric groups and combinatorial constructions of topological field theory type, Uspekhi Mat. Nauk 70 (2015), no. 4(424), 143–204 (Russian, with Russian summary); English transl., Russian Math. Surveys 70 (2015), no. 4, 715–773. MR 3400571, DOI 10.4213/rm9667
- Y. A. Neretin, On the group of infinite $p$-adic matrices with integer elements, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 468 (2018), no. Teoriya Predstavleniĭ, Dinamicheskie Sistemy, Kombinatornye Metody. XXIX, 105–125. MR 3869023
- G. I. Ol′shanskiĭ, Unitary representations of $(G,K)$-pairs that are connected with the infinite symmetric group $S(\infty )$, Algebra i Analiz 1 (1989), no. 4, 178–209 (Russian); English transl., Leningrad Math. J. 1 (1990), no. 4, 983–1014. MR 1027466
- G. I. Ol′shanskiĭ, Unitary representations of infinite-dimensional pairs $(G,K)$ and the formalism of R. Howe, Representation of Lie groups and related topics, Adv. Stud. Contemp. Math., vol. 7, Gordon and Breach, New York, 1990, pp. 269–463. MR 1104279
- G. I. Ol′shanskiĭ, On semigroups related to infinite-dimensional groups, Topics in representation theory, Adv. Soviet Math., vol. 2, Amer. Math. Soc., Providence, RI, 1991, pp. 67–101. MR 1104938, DOI 10.1016/0926-2245(91)90002-q
- Doug Pickrell, Measures on infinite-dimensional Grassmann manifolds, J. Funct. Anal. 70 (1987), no. 2, 323–356. MR 874060, DOI 10.1016/0022-1236(87)90116-9
- Jean-Pierre Serre, Cours d’arithmétique, Collection SUP: “Le Mathématicien”, vol. 2, Presses Universitaires de France, Paris, 1970 (French). MR 0255476
- Jean-Pierre Serre, Représentations linéaires des groupes finis, Hermann, Paris, 1967 (French). MR 0232867
- Todor Tsankov, Unitary representations of oligomorphic groups, Geom. Funct. Anal. 22 (2012), no. 2, 528–555. MR 2929072, DOI 10.1007/s00039-012-0156-9
- André Weil, Basic number theory, Die Grundlehren der mathematischen Wissenschaften, Band 144, Springer-Verlag New York, Inc., New York, 1967. MR 0234930, DOI 10.1007/978-3-662-00046-5
- E. I. Zelenov, Representations of commutations relations for $p$-adic systems of infinitely many degrees of freedom, J. Math. Phys. 33 (1992), no. 1, 178–188. MR 1141516, DOI 10.1063/1.529942
Bibliographic Information
- Yury A. Neretin
- Affiliation: Pauli Institute, Vienna, Austria; Institute for Theoretical Experimental Physics, Moscow, Russia; Department of Mechanics and Mathematics, Moscow State University, Moscow, Russia; and Institute for Information Transmission Problems, Moscow, Russia
- Address at time of publication: Department of Mathematics, University of Vienna, Vienna, Austria
- MR Author ID: 210026
- Received by editor(s): September 22, 2019
- Received by editor(s) in revised form: April 14, 2021
- Published electronically: July 19, 2021
- Additional Notes: This work was supported by the grants FWF, P28421, P31591
- © Copyright 2021 American Mathematical Society
- Journal: Represent. Theory 25 (2021), 606-643
- MSC (2020): Primary 22E50; Secondary 22E66, 20M18, 18B99
- DOI: https://doi.org/10.1090/ert/577
- MathSciNet review: 4287865