## Local Langlands correspondence for unitary groups via theta lifts

HTML articles powered by AMS MathViewer

- by Rui Chen and Jialiang Zou
- Represent. Theory
**25**(2021), 861-896 - DOI: https://doi.org/10.1090/ert/588
- Published electronically: October 13, 2021
- PDF | Request permission

## Abstract:

Using the theta correspondence, we extend the classification of irreducible representations of quasi-split unitary groups (the so-called local Langlands correspondence, which is due to Mok) to non quasi-split unitary groups. We also prove that our classification satisfies some good properties, which characterize it uniquely. In particular, this paper provides an alternative approach to the works of Kaletha-Mínguez-Shin-White and Mœglin-Renard.## References

- Anne-Marie Aubert, Paul Baum, Roger Plymen, and Maarten Solleveld,
*On the local Langlands correspondence for non-tempered representations*, Münster J. Math.**7**(2014), no. 1, 27–50. MR**3271238** - Hiraku Atobe and Wee Teck Gan,
*Local theta correspondence of tempered representations and Langlands parameters*, Invent. Math.**210**(2017), no. 2, 341–415. MR**3714507**, DOI 10.1007/s00222-017-0730-8 - James Arthur,
*The endoscopic classification of representations*, American Mathematical Society Colloquium Publications, vol. 61, American Mathematical Society, Providence, RI, 2013. Orthogonal and symplectic groups. MR**3135650**, DOI 10.1090/coll/061 - Hiraku Atobe,
*On the uniqueness of generic representations in an $L$-packet*, Int. Math. Res. Not. IMRN**23**(2017), 7051–7068. MR**3801418**, DOI 10.1093/imrn/rnw220 - Hiraku Atobe,
*The local theta correspondence and the local Gan-Gross-Prasad conjecture for the symplectic-metaplectic case*, Math. Ann.**371**(2018), no. 1-2, 225–295. MR**3788848**, DOI 10.1007/s00208-017-1620-5 - Ping-Shun Chan and Wee Teck Gan,
*The local Langlands conjecture for $\rm GSp(4)$ III: Stability and twisted endoscopy*, J. Number Theory**146**(2015), 69–133. MR**3267112**, DOI 10.1016/j.jnt.2013.07.009 - Rui Chen and Jialiang Zou,
*Local Langlands correspondence for even orthogonal groups via theta lifts*, Selecta Math. (N.S.)**27**(2021), no. 5, Paper No. 88, 71. MR**4308934**, DOI 10.1007/s00029-021-00704-8 - Wee Teck Gan, Benedict H. Gross, and Dipendra Prasad,
*Symplectic local root numbers, central critical $L$ values, and restriction problems in the representation theory of classical groups*, Astérisque**346**(2012), 1–109 (English, with English and French summaries). Sur les conjectures de Gross et Prasad. I. MR**3202556** - Wee Teck Gan and Atsushi Ichino,
*Formal degrees and local theta correspondence*, Invent. Math.**195**(2014), no. 3, 509–672. MR**3166215**, DOI 10.1007/s00222-013-0460-5 - Wee Teck Gan and Atsushi Ichino,
*The Gross-Prasad conjecture and local theta correspondence*, Invent. Math.**206**(2016), no. 3, 705–799. MR**3573972**, DOI 10.1007/s00222-016-0662-8 - Wee Teck Gan and Atsushi Ichino,
*The Shimura-Waldspurger correspondence for $\textrm {Mp}_{2n}$*, Ann. of Math. (2)**188**(2018), no. 3, 965–1016. MR**3866889**, DOI 10.4007/annals.2018.188.3.5 - Wee Teck Gan and Gordan Savin,
*Representations of metaplectic groups I: epsilon dichotomy and local Langlands correspondence*, Compos. Math.**148**(2012), no. 6, 1655–1694. MR**2999299**, DOI 10.1112/S0010437X12000486 - Wee Teck Gan and Shuichiro Takeda,
*The local Langlands conjecture for $\textrm {GSp}(4)$*, Ann. of Math. (2)**173**(2011), no. 3, 1841–1882. MR**2800725**, DOI 10.4007/annals.2011.173.3.12 - Wee Teck Gan and Shuichiro Takeda,
*On the Howe duality conjecture in classical theta correspondence*, Advances in the theory of automorphic forms and their $L$-functions, Contemp. Math., vol. 664, Amer. Math. Soc., Providence, RI, 2016, pp. 105–117. MR**3502978**, DOI 10.1090/conm/664/13063 - Wee Teck Gan and Shuichiro Takeda,
*A proof of the Howe duality conjecture*, J. Amer. Math. Soc.**29**(2016), no. 2, 473–493. MR**3454380**, DOI 10.1090/jams/839 - Michael Harris, Stephen S. Kudla, and William J. Sweet,
*Theta dichotomy for unitary groups*, J. Amer. Math. Soc.**9**(1996), no. 4, 941–1004. MR**1327161**, DOI 10.1090/S0894-0347-96-00198-1 - Hiroshi Ishimoto,
*Local intertwining relation for metaplectic groups*, Compos. Math.**156**(2020), no. 8, 1560–1594. MR**4157428**, DOI 10.1112/s0010437x20007253 - Hirotaka Kakuhama,
*On the local factors of irreducible representations of quaternionic unitary groups*, Manuscripta Math.**163**(2020), no. 1-2, 57–86. MR**4131991**, DOI 10.1007/s00229-019-01153-6 - Tasho Kaletha,
*Genericity and contragredience in the local Langlands correspondence*, Algebra Number Theory**7**(2013), no. 10, 2447–2474. MR**3194648**, DOI 10.2140/ant.2013.7.2447 - Tasho Kaletha, Alberto Minguez, Sug Woo Shin, and Paul-James White. Endoscopic classification of representations: Inner forms of unitary groups, preprint, arXiv:1409.3731, 2014.
- Takuya Konno,
*A note on the Langlands classification and irreducibility of induced representations of $p$-adic groups*, Kyushu J. Math.**57**(2003), no. 2, 383–409. MR**2050093**, DOI 10.2206/kyushujm.57.383 - Stephen S. Kudla,
*On the local theta-correspondence*, Invent. Math.**83**(1986), no. 2, 229–255. MR**818351**, DOI 10.1007/BF01388961 - Stephen S. Kudla,
*Splitting metaplectic covers of dual reductive pairs*, Israel J. Math.**87**(1994), no. 1-3, 361–401. MR**1286835**, DOI 10.1007/BF02773003 - Erez M. Lapid and Stephen Rallis,
*On the local factors of representations of classical groups*, Automorphic representations, $L$-functions and applications: progress and prospects, Ohio State Univ. Math. Res. Inst. Publ., vol. 11, de Gruyter, Berlin, 2005, pp. 309–359. MR**2192828**, DOI 10.1515/9783110892703.309 - Caihua Luo,
*Endoscopic character identities for metaplectic groups*, J. Reine Angew. Math.**768**(2020), 1–37. MR**4168685**, DOI 10.1515/crelle-2019-0042 - Alberto Mínguez,
*The conservation relation for cuspidal representations*, Math. Ann.**352**(2012), no. 1, 179–188. MR**2885581**, DOI 10.1007/s00208-011-0636-5 - Chung Pang Mok,
*Endoscopic classification of representations of quasi-split unitary groups*, Mem. Amer. Math. Soc.**235**(2015), no. 1108, vi+248. MR**3338302**, DOI 10.1090/memo/1108 - Colette Moeglin and David Renard,
*Sur les paquets d’Arthur des groupes classiques et unitaires non quasi-déployés*, Relative aspects in representation theory, Langlands functoriality and automorphic forms, Lecture Notes in Math., vol. 2221, Springer, Cham, 2018, pp. 341–361 (French). MR**3839702** - Colette Mœglin, Marie-France Vignéras, and Jean-Loup Waldspurger,
*Correspondances de Howe sur un corps $p$-adique*, Lecture Notes in Mathematics, vol. 1291, Springer-Verlag, Berlin, 1987 (French). MR**1041060**, DOI 10.1007/BFb0082712 - Freydoon Shahidi,
*A proof of Langlands’ conjecture on Plancherel measures; complementary series for $p$-adic groups*, Ann. of Math. (2)**132**(1990), no. 2, 273–330. MR**1070599**, DOI 10.2307/1971524 - Allan J. Silberger,
*The Langlands quotient theorem for $p$-adic groups*, Math. Ann.**236**(1978), no. 2, 95–104. MR**507262**, DOI 10.1007/BF01351383 - Binyong Sun and Chen-Bo Zhu,
*Conservation relations for local theta correspondence*, J. Amer. Math. Soc.**28**(2015), no. 4, 939–983. MR**3369906**, DOI 10.1090/S0894-0347-2014-00817-1 - J.-L. Waldspurger,
*Démonstration d’une conjecture de dualité de Howe dans le cas $p$-adique, $p\neq 2$*, Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part I (Ramat Aviv, 1989) Israel Math. Conf. Proc., vol. 2, Weizmann, Jerusalem, 1990, pp. 267–324 (French). MR**1159105** - A. V. Zelevinsky,
*Induced representations of reductive ${\mathfrak {p}}$-adic groups. II. On irreducible representations of $\textrm {GL}(n)$*, Ann. Sci. École Norm. Sup. (4)**13**(1980), no. 2, 165–210. MR**584084**, DOI 10.24033/asens.1379

## Bibliographic Information

**Rui Chen**- Affiliation: Department of Mathematics, National University of Singapore, Block S17, 10 Lower Kent Ridge Road, Singapore 119076
- ORCID: 0000-0002-9992-6369
- Email: e0046839@u.nus.edu
**Jialiang Zou**- Affiliation: Department of Mathematics, National University of Singapore, Block S17, 10 Lower Kent Ridge Road, Singapore 119076
- Email: e0220154@u.nus.edu
- Received by editor(s): September 4, 2020
- Received by editor(s) in revised form: June 14, 2021
- Published electronically: October 13, 2021
- © Copyright 2021 American Mathematical Society
- Journal: Represent. Theory
**25**(2021), 861-896 - MSC (2020): Primary 22E50
- DOI: https://doi.org/10.1090/ert/588
- MathSciNet review: 4324358