Nilpotent orbits, normality and Hamiltonian group actions
HTML articles powered by AMS MathViewer
- by Ranee Brylinski and Bertram Kostant
- J. Amer. Math. Soc. 7 (1994), 269-298
- DOI: https://doi.org/10.1090/S0894-0347-1994-1239505-8
- PDF | Request permission
References
- Ranee Kathryn Brylinski, Twisted ideals of the nullcone, Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989) Progr. Math., vol. 92, Birkhäuser Boston, Boston, MA, 1990, pp. 289–316. MR 1103594
- Ranee Brylinski and Bertram Kostant, The variety of all invariant symplectic structures on a homogeneous space and normalizers of isotropy subgroups, Symplectic geometry and mathematical physics (Aix-en-Provence, 1990) Progr. Math., vol. 99, Birkhäuser Boston, Boston, MA, 1991, pp. 80–113. MR 1156535
- Ranee Brylinski and Bertram Kostant, Nilpotent orbits, normality and Hamiltonian group actions, Bull. Amer. Math. Soc. (N.S.) 26 (1992), no. 2, 269–275. MR 1119160, DOI 10.1090/S0273-0979-1992-00271-9
- Roger W. Carter, Finite groups of Lie type, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1985. Conjugacy classes and complex characters; A Wiley-Interscience Publication. MR 794307
- M. Demazure, Automorphismes et déformations des variétés de Borel, Invent. Math. 39 (1977), no. 2, 179–186. MR 435092, DOI 10.1007/BF01390108
- S. I. Gel′fand, The Weil representation of a Lie algebra of type $G_{2}$ and related representations of $\textrm {SL}_{3}$, Funktsional. Anal. i Prilozhen. 14 (1980), no. 1, 51–52 (Russian). MR 565098
- William A. Graham, Functions on the universal cover of the principal nilpotent orbit, Invent. Math. 108 (1992), no. 1, 15–27. MR 1156383, DOI 10.1007/BF02100596
- James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York-Berlin, 1972. MR 0323842, DOI 10.1007/978-1-4612-6398-2
- M. Sato and T. Kimura, A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J. 65 (1977), 1–155. MR 430336, DOI 10.1017/S0027763000017633
- Bertram Kostant, The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. Math. 81 (1959), 973–1032. MR 114875, DOI 10.2307/2372999
- Bertram Kostant, Lie group representations on polynomial rings, Amer. J. Math. 85 (1963), 327–404. MR 158024, DOI 10.2307/2373130
- Bertram Kostant, Quantization and unitary representations. I. Prequantization, Lectures in Modern Analysis and Applications, III, Lecture Notes in Mathematics, Vol. 170, Springer, Berlin, 1970, pp. 87–208. MR 0294568
- Bertram Kostant, The vanishing of scalar curvature and the minimal representation of $\textrm {SO}(4,4)$, Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989) Progr. Math., vol. 92, Birkhäuser Boston, Boston, MA, 1990, pp. 85–124. MR 1103588
- Hanspeter Kraft, Closures of conjugacy classes in $G_2$, J. Algebra 126 (1989), no. 2, 454–465. MR 1025000, DOI 10.1016/0021-8693(89)90313-X
- Hanspeter Kraft and Claudio Procesi, On the geometry of conjugacy classes in classical groups, Comment. Math. Helv. 57 (1982), no. 4, 539–602. MR 694606, DOI 10.1007/BF02565876
- T. Levasseur and S. P. Smith, Primitive ideals and nilpotent orbits in type $G_2$, J. Algebra 114 (1988), no. 1, 81–105. MR 931902, DOI 10.1016/0021-8693(88)90214-1
- William M. McGovern, Dixmier algebras and the orbit method, Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989) Progr. Math., vol. 92, Birkhäuser Boston, Boston, MA, 1990, pp. 397–416. MR 1103597
- David Mumford, The red book of varieties and schemes, Lecture Notes in Mathematics, vol. 1358, Springer-Verlag, Berlin, 1988. MR 971985, DOI 10.1007/978-3-662-21581-4
- J.-M. Souriau, Structure des systèmes dynamiques, Dunod, Paris, 1970 (French). Maîtrises de mathématiques. MR 0260238
- Jean-Marie Souriau, Sur la variété de Képler, Symposia Mathematica, Vol. XIV (Convegno di Geometria Simplettica e Fisica Matematica & Convegno di Teoria Geometrica dell’Integrazione e Varietà Minimali, INDAM, Rome, 1973) Academic Press, London, 1974, pp. 343–360 (French). MR 0391646 —, Sur la variété de Kepler, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. (Proc. IUTAM-ISIMM Modern Developments in Analytical Mechanics) 117(suppl.) (1983), 369-418.
- T. A. Springer and R. Steinberg, Conjugacy classes, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) Lecture Notes in Mathematics, Vol. 131, Springer, Berlin, 1970, pp. 167–266. MR 0268192
- J. Tits, Espaces homogènes complexes compacts, Comment. Math. Helv. 37 (1962/63), 111–120 (French). MR 154299, DOI 10.1007/BF02566965 E. B. Vinberg and V. L. Popov, On a class of quasihomogeneous affine varieties, Math. USSR-Izv. 6 (1972), no. 4, 743-758.
- David A. Vogan Jr., The orbit method and primitive ideals for semisimple Lie algebras, Lie algebras and related topics (Windsor, Ont., 1984) CMS Conf. Proc., vol. 5, Amer. Math. Soc., Providence, RI, 1986, pp. 281–316. MR 832204, DOI 10.1007/BF01394418
- David A. Vogan Jr., Noncommutative algebras and unitary representations, The mathematical heritage of Hermann Weyl (Durham, NC, 1987) Proc. Sympos. Pure Math., vol. 48, Amer. Math. Soc., Providence, RI, 1988, pp. 35–60. MR 974331, DOI 10.1090/pspum/048/974331
- Aboubeker Zahid, Les endomorphismes $\mathfrak {k}$-finis des modules de Whittaker, Bull. Soc. Math. France 117 (1989), no. 4, 451–477 (French, with English summary). MR 1042433, DOI 10.24033/bsmf.2132
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: J. Amer. Math. Soc. 7 (1994), 269-298
- MSC: Primary 22E46; Secondary 14L30, 22E60, 32M05, 58F06
- DOI: https://doi.org/10.1090/S0894-0347-1994-1239505-8
- MathSciNet review: 1239505