Nilpotent orbits, normality and Hamiltonian group actions
Authors:
Ranee Brylinski and Bertram Kostant
Journal:
J. Amer. Math. Soc. 7 (1994), 269-298
MSC:
Primary 22E46; Secondary 14L30, 22E60, 32M05, 58F06
DOI:
https://doi.org/10.1090/S0894-0347-1994-1239505-8
MathSciNet review:
1239505
Full-text PDF Free Access
References | Similar Articles | Additional Information
- Ranee Kathryn Brylinski, Twisted ideals of the nullcone, Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989) Progr. Math., vol. 92, Birkhäuser Boston, Boston, MA, 1990, pp. 289–316. MR 1103594
- Ranee Brylinski and Bertram Kostant, The variety of all invariant symplectic structures on a homogeneous space and normalizers of isotropy subgroups, Symplectic geometry and mathematical physics (Aix-en-Provence, 1990) Progr. Math., vol. 99, Birkhäuser Boston, Boston, MA, 1991, pp. 80–113. MR 1156535
- Ranee Brylinski and Bertram Kostant, Nilpotent orbits, normality and Hamiltonian group actions, Bull. Amer. Math. Soc. (N.S.) 26 (1992), no. 2, 269–275. MR 1119160, DOI https://doi.org/10.1090/S0273-0979-1992-00271-9
- Roger W. Carter, Finite groups of Lie type, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1985. Conjugacy classes and complex characters; A Wiley-Interscience Publication. MR 794307
- M. Demazure, Automorphismes et déformations des variétés de Borel, Invent. Math. 39 (1977), no. 2, 179–186. MR 435092, DOI https://doi.org/10.1007/BF01390108
- S. I. Gel′fand, The Weil representation of a Lie algebra of type $G_{2}$ and related representations of ${\rm SL}_{3}$, Funktsional. Anal. i Prilozhen. 14 (1980), no. 1, 51–52 (Russian). MR 565098
- William A. Graham, Functions on the universal cover of the principal nilpotent orbit, Invent. Math. 108 (1992), no. 1, 15–27. MR 1156383, DOI https://doi.org/10.1007/BF02100596
- James E. Humphreys, Introduction to Lie algebras and representation theory, Springer-Verlag, New York-Berlin, 1972. Graduate Texts in Mathematics, Vol. 9. MR 0323842
- M. Sato and T. Kimura, A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J. 65 (1977), 1–155. MR 430336
- Bertram Kostant, The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. Math. 81 (1959), 973–1032. MR 114875, DOI https://doi.org/10.2307/2372999
- Bertram Kostant, Lie group representations on polynomial rings, Amer. J. Math. 85 (1963), 327–404. MR 158024, DOI https://doi.org/10.2307/2373130
- Bertram Kostant, Quantization and unitary representations. I. Prequantization, Lectures in modern analysis and applications, III, Springer, Berlin, 1970, pp. 87–208. Lecture Notes in Math., Vol. 170. MR 0294568
- Bertram Kostant, The vanishing of scalar curvature and the minimal representation of ${\rm SO}(4,4)$, Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989) Progr. Math., vol. 92, Birkhäuser Boston, Boston, MA, 1990, pp. 85–124. MR 1103588
- Hanspeter Kraft, Closures of conjugacy classes in $G_2$, J. Algebra 126 (1989), no. 2, 454–465. MR 1025000, DOI https://doi.org/10.1016/0021-8693%2889%2990313-X
- Hanspeter Kraft and Claudio Procesi, On the geometry of conjugacy classes in classical groups, Comment. Math. Helv. 57 (1982), no. 4, 539–602. MR 694606, DOI https://doi.org/10.1007/BF02565876
- T. Levasseur and S. P. Smith, Primitive ideals and nilpotent orbits in type $G_2$, J. Algebra 114 (1988), no. 1, 81–105. MR 931902, DOI https://doi.org/10.1016/0021-8693%2888%2990214-1
- William M. McGovern, Dixmier algebras and the orbit method, Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989) Progr. Math., vol. 92, Birkhäuser Boston, Boston, MA, 1990, pp. 397–416. MR 1103597
- David Mumford, The red book of varieties and schemes, Lecture Notes in Mathematics, vol. 1358, Springer-Verlag, Berlin, 1988. MR 971985
- J.-M. Souriau, Structure des systèmes dynamiques, Dunod, Paris, 1970 (French). Maîtrises de mathématiques. MR 0260238
- Jean-Marie Souriau, Sur la variété de Képler, Symposia Mathematica, Vol. XIV (Convegno di Geometria Simplettica e Fisica Matematica, INDAM, Rome, 1973) Academic Press, London, 1974, pp. 343–360 (French). MR 0391646 ---, Sur la variété de Kepler, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. (Proc. IUTAM-ISIMM Modern Developments in Analytical Mechanics) 117(suppl.) (1983), 369-418.
- T. A. Springer and R. Steinberg, Conjugacy classes, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) Lecture Notes in Mathematics, Vol. 131, Springer, Berlin, 1970, pp. 167–266. MR 0268192
- J. Tits, Espaces homogènes complexes compacts, Comment. Math. Helv. 37 (1962/63), 111–120 (French). MR 154299, DOI https://doi.org/10.1007/BF02566965 E. B. Vinberg and V. L. Popov, On a class of quasihomogeneous affine varieties, Math. USSR-Izv. 6 (1972), no. 4, 743-758.
- David A. Vogan Jr., The orbit method and primitive ideals for semisimple Lie algebras, Lie algebras and related topics (Windsor, Ont., 1984) CMS Conf. Proc., vol. 5, Amer. Math. Soc., Providence, RI, 1986, pp. 281–316. MR 832204, DOI https://doi.org/10.1007/bf01394418
- David A. Vogan Jr., Noncommutative algebras and unitary representations, The mathematical heritage of Hermann Weyl (Durham, NC, 1987) Proc. Sympos. Pure Math., vol. 48, Amer. Math. Soc., Providence, RI, 1988, pp. 35–60. MR 974331, DOI https://doi.org/10.1090/pspum/048/974331
- Aboubeker Zahid, Les endomorphismes $\mathfrak k$-finis des modules de Whittaker, Bull. Soc. Math. France 117 (1989), no. 4, 451–477 (French, with English summary). MR 1042433
Retrieve articles in Journal of the American Mathematical Society with MSC: 22E46, 14L30, 22E60, 32M05, 58F06
Retrieve articles in all journals with MSC: 22E46, 14L30, 22E60, 32M05, 58F06
Additional Information
Article copyright:
© Copyright 1994
American Mathematical Society