On the affine heat equation for non-convex curves
HTML articles powered by AMS MathViewer
- by Sigurd Angenent, Guillermo Sapiro and Allen Tannenbaum
- J. Amer. Math. Soc. 11 (1998), 601-634
- DOI: https://doi.org/10.1090/S0894-0347-98-00262-8
- PDF | Request permission
Abstract:
In this paper, we extend to the non-convex case the affine invariant geometric heat equation studied by Sapiro and Tannenbaum for convex plane curves. We prove that a smooth embedded plane curve will converge to a point when evolving according to this flow. This result extends the analogy between the affine heat equation and the well-known Euclidean geometric heat equation.References
- Luis Álvarez, Frédéric Guichard, Pierre-Louis Lions, and Jean-Michel Morel, Axiomes et équations fondamentales du traitement d’images (analyse multiéchelle et EDP), C. R. Acad. Sci. Paris Sér. I Math. 315 (1992), no. 2, 135–138 (French, with English and French summaries). MR 1197224
- Luis Alvarez, Frédéric Guichard, Pierre-Louis Lions, and Jean-Michel Morel, Axiomatisation et nouveaux opérateurs de la morphologie mathématique, C. R. Acad. Sci. Paris Sér. I Math. 315 (1992), no. 3, 265–268 (French, with English and French summaries). MR 1179717
- Ben Andrews, Contraction of convex hypersurfaces by their affine normal, J. Differential Geom. 43 (1996), no. 2, 207–230. MR 1424425
- Sigurd Angenent, Parabolic equations for curves on surfaces. I. Curves with $p$-integrable curvature, Ann. of Math. (2) 132 (1990), no. 3, 451–483. MR 1078266, DOI 10.2307/1971426
- Sigurd Angenent, Parabolic equations for curves on surfaces. II. Intersections, blow-up and generalized solutions, Ann. of Math. (2) 133 (1991), no. 1, 171–215. MR 1087347, DOI 10.2307/2944327
- Sigurd Angenent, On the formation of singularities in the curve shortening flow, J. Differential Geom. 33 (1991), no. 3, 601–633. MR 1100205
- Sigurd Angenent, The zero set of a solution of a parabolic equation, J. Reine Angew. Math. 390 (1988), 79–96. MR 953678, DOI 10.1515/crll.1988.390.79
- W. Blaschke, Vorlesungen über Differentialgeometrie II, Verlag Von Julius Springer, Berlin, 1923.
- Bu Chin Su, Affine differential geometry, Science Press Beijing, Beijing; Gordon & Breach Science Publishers, New York, 1983. MR 724783
- Jean A. Dieudonné and James B. Carrell, Invariant theory, old and new, Academic Press, New York-London, 1971. MR 0279102
- Xu-Yan Chen and Hiroshi Matano, Convergence, asymptotic periodicity, and finite-point blow-up in one-dimensional semilinear heat equations, J. Differential Equations 78 (1989), no. 1, 160–190. MR 986159, DOI 10.1016/0022-0396(89)90081-8
- C. L. Epstein and Michael Gage, The curve shortening flow, Wave motion: theory, modelling, and computation (Berkeley, Calif., 1986) Math. Sci. Res. Inst. Publ., vol. 7, Springer, New York, 1987, pp. 15–59. MR 920831, DOI 10.1007/978-1-4613-9583-6_{2}
- Michael E. Gage, An isoperimetric inequality with applications to curve shortening, Duke Math. J. 50 (1983), no. 4, 1225–1229. MR 726325, DOI 10.1215/S0012-7094-83-05052-4
- M. E. Gage, Curve shortening makes convex curves circular, Invent. Math. 76 (1984), no. 2, 357–364. MR 742856, DOI 10.1007/BF01388602
- M. Gage and R. S. Hamilton, The heat equation shrinking convex plane curves, J. Differential Geom. 23 (1986), no. 1, 69–96. MR 840401, DOI 10.4310/jdg/1214439902
- Matthew A. Grayson, The heat equation shrinks embedded plane curves to round points, J. Differential Geom. 26 (1987), no. 2, 285–314. MR 906392
- Matthew A. Grayson, Shortening embedded curves, Ann. of Math. (2) 129 (1989), no. 1, 71–111. MR 979601, DOI 10.2307/1971486
- Heinrich W. Guggenheimer, Differential geometry, McGraw-Hill Book Co., Inc., New York-San Francisco-Toronto-London, 1963. MR 0156266
- Benjamin B. Kimia, Allen Tannenbaum, and Steven W. Zucker, On the evolution of curves via a function of curvature. I. The classical case, J. Math. Anal. Appl. 163 (1992), no. 2, 438–458. MR 1145840, DOI 10.1016/0022-247X(92)90260-K
- B. B. Kimia, A. Tannenbaum, and S. W. Zucker, “Shapes, shocks, and deformations,” Int. J. Computer Vision 15 (1995), 189-224.
- Hiroshi Matano, Nonincrease of the lap-number of a solution for a one-dimensional semilinear parabolic equation, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29 (1982), no. 2, 401–441. MR 672070
- Peter J. Olver, Applications of Lie groups to differential equations, 2nd ed., Graduate Texts in Mathematics, vol. 107, Springer-Verlag, New York, 1993. MR 1240056, DOI 10.1007/978-1-4612-4350-2
- P. J. Olver, “Differential invariants,” to appear in Acta Appl. Math.
- P. Olver, G. Sapiro, and A. Tannenbaum, “Differential invariant signatures and flows in computer vision: A symmetry group approach,” Geometric Driven Diffusion, edited by Bart ter har Romeny, Kluwer, 1994.
- Peter J. Olver, Guillermo Sapiro, and Allen Tannenbaum, Classification and uniqueness of invariant geometric flows, C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), no. 4, 339–344 (English, with English and French summaries). MR 1289308
- Peter J. Olver, Guillermo Sapiro, and Allen Tannenbaum, Invariant geometric evolutions of surfaces and volumetric smoothing, SIAM J. Appl. Math. 57 (1997), no. 1, 176–194. MR 1429382, DOI 10.1137/S0036139994266311
- P. Olver, G. Sapiro, and A. Tannenbaum, “Affine invariant edge maps and active contours,” to appear in CVIU.
- Stanley Osher and James A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys. 79 (1988), no. 1, 12–49. MR 965860, DOI 10.1016/0021-9991(88)90002-2
- Murray H. Protter and Hans F. Weinberger, Maximum principles in differential equations, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1967. MR 0219861
- Guillermo Sapiro and Allen Tannenbaum, On affine plane curve evolution, J. Funct. Anal. 119 (1994), no. 1, 79–120. MR 1255274, DOI 10.1006/jfan.1994.1004
- G. Sapiro and A. Tannenbaum, “Affine invariant scale-space,” Int. J. Computer Vision 11, pp. 25-44, 1993.
- Guillermo Sapiro and Allen Tannenbaum, On invariant curve evolution and image analysis, Indiana Univ. Math. J. 42 (1993), no. 3, 985–1009. MR 1254129, DOI 10.1512/iumj.1993.42.42046
- G. Sapiro and A. Tannenbaum, “Area and length preserving geometric invariant scale-spaces," IEEE Trans. Pattern Analysis and Machine Intelligence 17 (1995), 1066-1070.
- Michael Spivak, A comprehensive introduction to differential geometry. Vol. I, 2nd ed., Publish or Perish, Inc., Wilmington, Del., 1979. MR 532830
- Brian White, Some recent developments in differential geometry, Math. Intelligencer 11 (1989), no. 4, 41–47. MR 1016106, DOI 10.1007/BF03025885
Bibliographic Information
- Sigurd Angenent
- Affiliation: Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706
- MR Author ID: 26245
- ORCID: 0000-0003-3515-4539
- Guillermo Sapiro
- Affiliation: Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455
- Allen Tannenbaum
- Email: tannenba@ece.umn.edu
- Received by editor(s): April 24, 1997
- Received by editor(s) in revised form: January 20, 1998
- Additional Notes: This work was supported in part by grants from the National Science Foundation DMS-9058492, ECS-9122106, ECS-99700588, NSF-LIS, by the Air Force Office of Scientific Research AF/F49620-94-1-00S8DEF, AF/F49620-94-1-0461, AF/F49620-98-1-0168, by the Army Research Office DAAL03-92-G-0115, DAAH04-94-G-0054, DAAH04-93-G-0332, MURI Grant, Office of Naval Research ONR-N00014-97-1-0509, and by the Rothschild Foundation-Yad Hanadiv.
- © Copyright 1998 American Mathematical Society
- Journal: J. Amer. Math. Soc. 11 (1998), 601-634
- MSC (1991): Primary 35K22, 53A15, 58G11
- DOI: https://doi.org/10.1090/S0894-0347-98-00262-8
- MathSciNet review: 1491538