The spectra of nonnegative integer matrices via formal power series
HTML articles powered by AMS MathViewer
- by Ki Hang Kim, Nicholas S. Ormes and Fred W. Roush;
- J. Amer. Math. Soc. 13 (2000), 773-806
- DOI: https://doi.org/10.1090/S0894-0347-00-00342-8
- Published electronically: June 21, 2000
- PDF | Request permission
Abstract:
We characterize the possible nonzero spectra of primitive integer matrices (the integer case of Boyle and Handelman’s Spectral Conjecture). Characterizations of nonzero spectra of nonnegative matrices over ${\mathbb Z}$ and ${\mathbb Q}$ follow from this result. For the proof of the main theorem we use polynomial matrices to reduce the problem of realizing a candidate spectrum $(\lambda _1,\lambda _2,\ldots ,\lambda _d)$ to factoring the polynomial $\prod _{i=1}^d (1-\lambda _it)$ as a product $(1-r(t))\prod _{i=1}^n (1-q_i(t))$ where the $q_i$’s are polynomials in $t{\mathbb Z}_+[t]$ satisfying some technical conditions and $r$ is a formal power series in $t{\mathbb Z}_+[[t]]$. To obtain the factorization, we present a hierarchy of estimates on coefficients of power series of the form $\prod _{i=1}^d (1-\lambda _it)/\prod _{i=1}^n (1-q_i(t))$ to ensure nonpositivity in nonzero degree terms.References
- Louis Block, John Guckenheimer, MichałMisiurewicz, and Lai Sang Young, Periodic points and topological entropy of one-dimensional maps, Global theory of dynamical systems (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1979) Lecture Notes in Math., vol. 819, Springer, Berlin, 1980, pp. 18–34. MR 591173
- Mike Boyle and David Handelman, The spectra of nonnegative matrices via symbolic dynamics, Ann. of Math. (2) 133 (1991), no. 2, 249–316. MR 1097240, DOI 10.2307/2944339
- Mike Boyle and David Handelman, Algebraic shift equivalence and primitive matrices, Trans. Amer. Math. Soc. 336 (1993), no. 1, 121–149. MR 1102219, DOI 10.1090/S0002-9947-1993-1102219-4
- Alberto Borobia, On the nonnegative eigenvalue problem, Linear Algebra Appl. 223/224 (1995), 131–140. Special issue honoring Miroslav Fiedler and Vlastimil Pták. MR 1340689, DOI 10.1016/0024-3795(94)00343-C
- Mike Boyle, Symbolic dynamics and matrices, Combinatorial and graph-theoretical problems in linear algebra (Minneapolis, MN, 1991) IMA Vol. Math. Appl., vol. 50, Springer, New York, 1993, pp. 1–38. MR 1240955, DOI 10.1007/978-1-4613-8354-3_{1}
- Abraham Berman and Robert J. Plemmons, Nonnegative matrices in the mathematical sciences, Classics in Applied Mathematics, vol. 9, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1994. Revised reprint of the 1979 original. MR 1298430, DOI 10.1137/1.9781611971262
- P. G. Ciarlet, Some results in the theory of nonnegative matrices, Linear Algebra Appl. 1 (1968), no. 1, 139–152. MR 223386, DOI 10.1016/0024-3795(68)90054-2
- Miroslav Fiedler, Eigenvalues of nonnegative symmetric matrices, Linear Algebra Appl. 9 (1974), 119–142. MR 364288, DOI 10.1016/0024-3795(74)90031-7
- Shmuel Friedland, On an inverse problem for nonnegative and eventually nonnegative matrices, Israel J. Math. 29 (1978), no. 1, 43–60. MR 492634, DOI 10.1007/BF02760401
- Charles R. Johnson, Thomas J. Laffey, and Raphael Loewy, The real and the symmetric nonnegative inverse eigenvalue problems are different, Proc. Amer. Math. Soc. 124 (1996), no. 12, 3647–3651. MR 1350951, DOI 10.1090/S0002-9939-96-03587-3
- Charles R. Johnson, Row stochastic matrices similar to doubly stochastic matrices, Linear and Multilinear Algebra 10 (1981), no. 2, 113–130. MR 618581, DOI 10.1080/03081088108817402
- R. Bruce Kellogg, Matrices similar to a positive or essentially positive matrix, Linear Algebra Appl. 4 (1971), 191–204. MR 288133, DOI 10.1016/0024-3795(71)90015-2
- K. H. Kim, F. W. Roush, and J. B. Wagoner, Inert actions on periodic points, Electron. Res. Announc. Amer. Math. Soc. 3 (1997), 55–62. MR 1464576, DOI 10.1090/S1079-6762-97-00024-3
- D. A. Lind, The entropies of topological Markov shifts and a related class of algebraic integers, Ergodic Theory Dynam. Systems 4 (1984), no. 2, 283–300. MR 766106, DOI 10.1017/S0143385700002443
- Raphael Loewy and David London, A note on an inverse problem for nonnegative matrices, Linear and Multilinear Algebra 6 (1978/79), no. 1, 83–90. MR 480563, DOI 10.1080/03081087808817226
- Douglas Lind and Brian Marcus, An introduction to symbolic dynamics and coding, Cambridge University Press, Cambridge, 1995. MR 1369092, DOI 10.1017/CBO9780511626302
- Thomas J. Laffey and Eleanor Meehan, A refinement of an inequality of Johnson, Loewy and London on nonnegative matrices and some applications, Electron. J. Linear Algebra 3 (1998), 119–128. MR 1637415, DOI 10.13001/1081-3810.1018 [LM99]LafMee2 T. J. Laffey and E. Meehan, A characterization of trace zero nonnegative $5 \times 5$ matrices, Linear Algebra Appl. 302-303 (1999), 295–302.
- Henryk Minc, Nonnegative matrices, Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons, Inc., New York, 1988. A Wiley-Interscience Publication. MR 932967
- Brian Marcus and Selim Tuncel, The weight-per-symbol polytope and scaffolds of invariants associated with Markov chains, Ergodic Theory Dynam. Systems 11 (1991), no. 1, 129–180. MR 1101088, DOI 10.1017/S0143385700006052
- Sam Perlis, Maximal orders in rational cyclic algebras of composite degree, Trans. Amer. Math. Soc. 46 (1939), 82–96. MR 15, DOI 10.1090/S0002-9947-1939-0000015-X
- Dominique Perrin, On positive matrices, Theoret. Comput. Sci. 94 (1992), no. 2, 357–366. Discrete mathematics and applications to computer science (Marseille, 1989). MR 1157864, DOI 10.1016/0304-3975(92)90043-F [Rea94]ReamsPhD R. Reams, Topics in matrix theory, Ph.D. thesis, National University of Ireland, Dublin, 1994.
- Robert Reams, An inequality for nonnegative matrices and the inverse eigenvalue problem, Linear and Multilinear Algebra 41 (1996), no. 4, 367–375. MR 1481909, DOI 10.1080/03081089608818485
- Frank L. Salzmann, A note on eigenvalues of nonnegative matrices, Linear Algebra Appl. 5 (1972), 329–338. MR 320034
- George W. Soules, Constructing symmetric nonnegative matrices, Linear and Multilinear Algebra 13 (1983), no. 3, 241–251. MR 700887, DOI 10.1080/03081088308817523
- Morgan Ward and R. P. Dilworth, The lattice theory of ova, Ann. of Math. (2) 40 (1939), 600–608. MR 11, DOI 10.2307/1968944
- Guo Wuwen, Eigenvalues of nonnegative matrices, Linear Algebra Appl. 266 (1997), 261–270. MR 1473205, DOI 10.1016/S0024-3795(96)00007-9
Bibliographic Information
- Ki Hang Kim
- Affiliation: Mathematics Research Group, Alabama State University, Montgomery, Alabama 36101-0271 and Korean Academy of Science and Technology
- Email: kkim@gmail.alasu.edu
- Nicholas S. Ormes
- Affiliation: Department of Mathematics, C1200, University of Texas, Austin, Texas 78712
- Address at time of publication: Department of Mathematics, University of Connecticut, Storrs, Connecticut 06269-3009
- MR Author ID: 620777
- Email: ormes@math.utexas.edu
- Fred W. Roush
- Affiliation: Mathematics Research Group, Alabama State University, Montgomery, Alabama 36101-0271
- Email: froush@gmail.alasu.edu
- Received by editor(s): August 19, 1998
- Received by editor(s) in revised form: February 1, 2000
- Published electronically: June 21, 2000
- © Copyright 2000 American Mathematical Society
- Journal: J. Amer. Math. Soc. 13 (2000), 773-806
- MSC (1991): Primary 15A18; Secondary 15A36, 58F03, 58F20
- DOI: https://doi.org/10.1090/S0894-0347-00-00342-8
- MathSciNet review: 1775737