$R$-equivalence in spinor groups
HTML articles powered by AMS MathViewer
- by Vladimir Chernousov and Alexander Merkurjev PDF
- J. Amer. Math. Soc. 14 (2001), 509-534 Request permission
Abstract:
The groups of $R$-equivalent classes of the spinor groups of non-degenerate quadratic forms over arbitrary fields are computed in terms of certain $K$-cohomology groups of corresponding quadric hypersurfaces. As an application, examples of non-rational spinor groups of every dimension $\geq 6$ are given.References
- Armand Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. MR 1102012, DOI 10.1007/978-1-4612-0941-6
- V. Chernousov and A. Merkurjev, $R$-equivalence and special unitary groups, J. Algebra 209 (1998), no. 1, 175–198. MR 1652122, DOI 10.1006/jabr.1998.7534
- Jean-Louis Colliot-Thélène and Jean-Jacques Sansuc, La $R$-équivalence sur les tores, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 2, 175–229 (French). MR 450280, DOI 10.24033/asens.1325
- Jean-Louis Colliot-Thélène and Manuel Ojanguren, Espaces principaux homogènes localement triviaux, Inst. Hautes Études Sci. Publ. Math. 75 (1992), 97–122 (French). MR 1179077, DOI 10.1007/BF02699492
- P. K. Draxl, Skew fields, London Mathematical Society Lecture Note Series, vol. 81, Cambridge University Press, Cambridge, 1983. MR 696937, DOI 10.1017/CBO9780511661907
- Philippe Gille, Un théorème de finitude arithmétique sur les groupes réductifs, C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), no. 7, 701–704 (French, with English and French summaries). MR 1214419
- Philippe Gille, La $R$-équivalence sur les groupes algébriques réductifs définis sur un corps global, Inst. Hautes Études Sci. Publ. Math. 86 (1997), 199–235 (1998) (French). MR 1608570, DOI 10.1007/BF02698903
- J. Horn, Über eine hypergeometrische Funktion zweier Veränderlichen, Monatsh. Math. Phys. 47 (1939), 359–379 (German). MR 91, DOI 10.1007/BF01695508
- Max-Albert Knus, Alexander Merkurjev, Markus Rost, and Jean-Pierre Tignol, The book of involutions, American Mathematical Society Colloquium Publications, vol. 44, American Mathematical Society, Providence, RI, 1998. With a preface in French by J. Tits. MR 1632779, DOI 10.1090/coll/044 ManinCor Yu.I. Manin, Correspondences, motifs and monoidal transformations, Math. USSR Sb. 6 (1968), 439–470.
- Yu. I. Manin and M. Hazewinkel, Cubic forms: algebra, geometry, arithmetic, North-Holland Mathematical Library, Vol. 4, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1974. Translated from the Russian by M. Hazewinkel. MR 0460349
- A. S. Merkurjev, Generic element in $SK_1$ for simple algebras, $K$-Theory 7 (1993), no. 1, 1–3. MR 1220421, DOI 10.1007/BF00962788 MerkCycles A.S. Merkurjev, Zero-dimensional cycles on some involution varieties. (Russian) Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 227 (1995), Voprosy Teor. Predstav. Algebr i Grupp. 4, 93–105, 158. MerkNorm A.S. Merkurjev, Norm principle for algebraic groups, Algebra i Analiz (Leningrad Math. J.) 7 (1995), 77–105.
- A. S. Merkurjev, $R$-equivalence and rationality problem for semisimple adjoint classical algebraic groups, Inst. Hautes Études Sci. Publ. Math. 84 (1996), 189–213 (1997). MR 1441008, DOI 10.1007/BF02698837
- A. S. Merkurjev, $K$-theory and algebraic groups, European Congress of Mathematics, Vol. II (Budapest, 1996) Progr. Math., vol. 169, Birkhäuser, Basel, 1998, pp. 43–72. MR 1645818
- Alexander Merkurjev, Invariants of algebraic groups, J. Reine Angew. Math. 508 (1999), 127–156. MR 1676873, DOI 10.1515/crll.1999.022
- A. S. Merkurjev and A. A. Suslin, The group of $K_1$-zero-cycles on Severi-Brauer varieties, Nova J. Algebra Geom. 1 (1992), no. 3, 297–315. MR 1218356
- John Milnor, Algebraic $K$-theory and quadratic forms, Invent. Math. 9 (1969/70), 318–344. MR 260844, DOI 10.1007/BF01425486 Panin I.A. Panin, I. Application of $K$-theory in algebraic geometry, Thesis, LOMI, Leningrad, 1984.
- V. P. Platonov, Birational properties of spinor varieties, Trudy Mat. Inst. Steklov. 157 (1981), 161–169, 236–237 (Russian). Number theory, mathematical analysis and their applications. MR 651765
- Markus Rost, Chow groups with coefficients, Doc. Math. 1 (1996), No. 16, 319–393. MR 1418952 RostSpin M. Rost, On the spinor norm and $A_0(X,K_1)$ for quadrics, Preprint (1988), http://www.physik.uni-regensburg.de/˜rom03516/spinor.html.
- Clayton C. Sherman, $K$-cohomology of regular schemes, Comm. Algebra 7 (1979), no. 10, 999–1027. MR 533201, DOI 10.1080/00927877908822388
- Clayton Sherman, Some theorems on the $K$-theory of coherent sheaves, Comm. Algebra 7 (1979), no. 14, 1489–1508. MR 541048, DOI 10.1080/00927877908822414
- A. A. Suslin, $SK_1$ of division algebras and Galois cohomology, Algebraic $K$-theory, Adv. Soviet Math., vol. 4, Amer. Math. Soc., Providence, RI, 1991, pp. 75–99. MR 1124627
- Richard G. Swan, $K$-theory of quadric hypersurfaces, Ann. of Math. (2) 122 (1985), no. 1, 113–153. MR 799254, DOI 10.2307/1971371
- David Tao, A variety associated to an algebra with involution, J. Algebra 168 (1994), no. 2, 479–520. MR 1292777, DOI 10.1006/jabr.1994.1241
- V. E. Voskresenskiĭ, Algebraicheskie tory, Izdat. “Nauka”, Moscow, 1977 (Russian). MR 0506279
- André Weil, Algebras with involutions and the classical groups, J. Indian Math. Soc. (N.S.) 24 (1960), 589–623 (1961). MR 136682
Additional Information
- Vladimir Chernousov
- Affiliation: Fakultät Mathematik, Universität Bielefeld, Postfach 100131, 33501 Bielefeld, Germany
- MR Author ID: 199556
- Email: chernous@mathematik.uni-bielefeld.de
- Alexander Merkurjev
- Affiliation: Department of Mathematics, University of California, Los Angeles, California 90095-1555
- MR Author ID: 191878
- ORCID: 0000-0002-4447-1838
- Email: merkurev@math.ucla.edu
- Received by editor(s): January 5, 2000
- Received by editor(s) in revised form: June 5, 2000
- Published electronically: February 27, 2001
- Additional Notes: The first author gratefully acknowledges the support of SFB 343 “Diskrete Strukturen in der Mathematik", TMR ERB FMRX CT-97-0107 and the hospitality of the University of Bielefeld.
The second author was partially supported by NSF Grant DMS 9801646. - © Copyright 2001 American Mathematical Society
- Journal: J. Amer. Math. Soc. 14 (2001), 509-534
- MSC (2000): Primary 11E04, 20G15; Secondary 14C35
- DOI: https://doi.org/10.1090/S0894-0347-01-00365-4
- MathSciNet review: 1824991