Bochner-Kähler metrics
HTML articles powered by AMS MathViewer
- by Robert L. Bryant
- J. Amer. Math. Soc. 14 (2001), 623-715
- DOI: https://doi.org/10.1090/S0894-0347-01-00366-6
- Published electronically: March 20, 2001
- PDF | Request permission
Abstract:
A Kähler metric is said to be Bochner-Kähler if its Bochner curvature vanishes. This is a nontrivial condition when the complex dimension of the underlying manifold is at least $2$. In this article it will be shown that, in a certain well-defined sense, the space of Bochner-Kähler metrics in complex dimension $n$ has real dimension $n{+}1$ and a recipe for an explicit formula for any Bochner-Kähler metric will be given. It is shown that any Bochner-Kähler metric in complex dimension $n$ has local (real) cohomogeneity at most $n$. The Bochner-Kähler metrics that can be ‘analytically continued’ to a complete metric, free of singularities, are identified. In particular, it is shown that the only compact Bochner-Kähler manifolds are the discrete quotients of the known symmetric examples. However, there are compact Bochner-Kähler orbifolds that are not locally symmetric. In fact, every weighted projective space carries a Bochner-Kähler metric. The fundamental technique is to construct a canonical infinitesimal torus action on a Bochner-Kähler metric whose associated momentum mapping has the orbits of its symmetry pseudo-groupoid as fibers.References
- Miguel Abreu, Kähler geometry of toric varieties and extremal metrics, Internat. J. Math. 9 (1998), no. 6, 641–651. MR 1644291, DOI 10.1142/S0129167X98000282 AG V. Apostolov and P. Gauduchon, Self-dual Einstein Hermitian four-manifolds, preprint, 2000, arXiv:math.DG/0003162.
- Arthur L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10, Springer-Verlag, Berlin, 1987. MR 867684, DOI 10.1007/978-3-540-74311-8
- Morgan Ward, Ring homomorphisms which are also lattice homomorphisms, Amer. J. Math. 61 (1939), 783–787. MR 10, DOI 10.2307/2371336
- Sam Perlis, Maximal orders in rational cyclic algebras of composite degree, Trans. Amer. Math. Soc. 46 (1939), 82–96. MR 15, DOI 10.1090/S0002-9947-1939-0000015-X Ca É. Cartan, Sur la structure des groupes inifinis de transformations, Ann. Éc. Norm. 3 (1904), 153–206. (Reprinted in Cartan’s Collected Works, Part II.)
- Bang-Yen Chen, Some topological obstructions to Bochner-Kaehler metrics and their applications, J. Differential Geometry 13 (1978), no. 4, 547–558 (1979). MR 570217
- Johan Deprez, Kouei Sekigawa, and Leopold Verstraelen, Classifications of Kaehler manifolds satisfying some curvature conditions, Sci. Rep. Niigata Univ. Ser. A 24 (1988), 1–12. MR 929631
- Andrzej Derdziński, Self-dual Kähler manifolds and Einstein manifolds of dimension four, Compositio Math. 49 (1983), no. 3, 405–433. MR 707181
- Norio Ejiri, Bochner Kähler metrics, Bull. Sci. Math. (2) 108 (1984), no. 4, 423–436 (English, with French summary). MR 784677
- William Fulton and Joe Harris, Representation theory, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991. A first course; Readings in Mathematics. MR 1153249, DOI 10.1007/978-1-4612-0979-9
- Victor Guillemin, Kaehler structures on toric varieties, J. Differential Geom. 40 (1994), no. 2, 285–309. MR 1293656
- Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 514561
- Yoshinobu Kamishima, Uniformization of Kähler manifolds with vanishing Bochner tensor, Acta Math. 172 (1994), no. 2, 299–308. MR 1278113, DOI 10.1007/BF02392648
- U-Hang Ki and Byung Hak Kim, Manifolds with Kaehler-Bochner metric, Kyungpook Math. J. 32 (1992), no. 2, 285–290. MR 1203945
- J. Leysen, M. Petrović-Torgašev, and L. Verstraelen, Some curvature conditions in Bochner-Kaehler manifolds, Atti Accad. Peloritana Pericolanti. Cl. Sci. Fis. Mat. Natur. 65 (1987), 85–94 (1988). MR 996511
- Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol. II, Interscience Tracts in Pure and Applied Mathematics, No. 15 Vol. II, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1969. MR 0238225
- Kirill C. H. Mackenzie, Lie algebroids and Lie pseudoalgebras, Bull. London Math. Soc. 27 (1995), no. 2, 97–147. MR 1325261, DOI 10.1112/blms/27.2.97
- Masatsune Matsumoto, On Kählerian spaces with parallel or vanishing Bochner curvature tensor, Tensor (N.S.) 20 (1969), 25–28. MR 242099
- Masatsune Matsumoto and Shûkichi Tanno, Kählerian spaces with parallel or vanishing Bochner curvature tensor, Tensor (N.S.) 27 (1973), 291–294. MR 343199
- Jean Pradines, Théorie de Lie pour les groupoïdes différentiables. Calcul différenetiel dans la catégorie des groupoïdes infinitésimaux, C. R. Acad. Sci. Paris Sér. A-B 264 (1967), A245–A248 (French). MR 216409
- Jean Pradines, Troisième théorème de Lie les groupoïdes différentiables, C. R. Acad. Sci. Paris Sér. A-B 267 (1968), A21–A23 (French). MR 231414
- C. Procesi, The invariant theory of $n\times n$ matrices, Advances in Math. 19 (1976), no. 3, 306–381. MR 419491, DOI 10.1016/0001-8708(76)90027-X
- Nevena Pušić, On an invariant tensor of a conformal transformation of a hyperbolic Kaehlerian manifold, Zb. Rad. 4 (1990), 55–64 (English, with Serbo-Croatian summary). MR 1141611
- Nevena Pušić, On HB-flat hyperbolic Kaehlerian spaces, Mat. Vesnik 49 (1997), no. 1, 35–44. 11th Yugoslav Geometrical Seminar (Divčibare, 1996). MR 1491945
- M. S. Robertson, The variation of the sign of $V$ for an analytic function $U+iV$, Duke Math. J. 5 (1939), 512–519. MR 51, DOI 10.1215/S0012-7094-39-00542-9 SW A. Cannas da Silva and A. Weinstein, Geometric Models for Noncommutative Algebras, University of California at Berkeley Lecture Notes, American Mathematical Society, 1999.
- Shun-ichi Tachibana and Richard Chieng Liu, Notes on Kählerian metrics with vanishing Bochner curvature tensor, K\B{o}dai Math. Sem. Rep. 22 (1970), 313–321. MR 266121, DOI 10.2996/kmj/1138846167
- Hitoshi Takagi and Yoshiyuki Watanabe, Kählerian manifolds with vanishing Bochner curvature tensor satisfying $R(X,\,Y)\cdot R_{1}=0$, Hokkaido Math. J. 3 (1974), 129–132. MR 338973, DOI 10.14492/hokmj/1381758951
- Dirk Van Lindt and Leopold Verstraelen, A survey on axioms of submanifolds in Riemannian and Kaehlerian geometry, Colloq. Math. 54 (1987), no. 2, 193–213. MR 948513, DOI 10.4064/cm-54-2-193-213
Bibliographic Information
- Robert L. Bryant
- Affiliation: Department of Mathematics, Duke University, P.O. Box 90320, Durham, North Carolina 27708-0320
- MR Author ID: 42675
- Email: bryant@math.duke.edu
- Received by editor(s): July 6, 2000
- Received by editor(s) in revised form: December 19, 2000
- Published electronically: March 20, 2001
- Additional Notes: The research for this article was made possible by support from the National Science Foundation through grant DMS-9870164 and from Duke University.
- © Copyright 2001 American Mathematical Society
- Journal: J. Amer. Math. Soc. 14 (2001), 623-715
- MSC (2000): Primary 53B35; Secondary 53C55
- DOI: https://doi.org/10.1090/S0894-0347-01-00366-6
- MathSciNet review: 1824987