Blow up in finite time and dynamics of blow up solutions for the $L^2$–critical generalized KdV equation
HTML articles powered by AMS MathViewer
- by Yvan Martel and Frank Merle;
- J. Amer. Math. Soc. 15 (2002), 617-664
- DOI: https://doi.org/10.1090/S0894-0347-02-00392-2
- Published electronically: March 8, 2002
- PDF | Request permission
Abstract:
In this paper, we describe the dynamics of blow up solutions for the critical generalized KdV equation such that the initial data is close to the soliton in $L^2$ and has decay in $L^2$ at the right. In particular, we prove that blow up occurs in finite time, and we obtain an upper bound on the blow up rate.References
- J. L. Bona, V. A. Dougalis, O. A. Karakashian, and W. R. McKinney, Conservative, high-order numerical schemes for the generalized Korteweg-de Vries equation, Philos. Trans. Roy. Soc. London Ser. A 351 (1995), no. 1695, 107–164. MR 1336983, DOI 10.1098/rsta.1995.0027
- Jean Bourgain, Harmonic analysis and nonlinear partial differential equations, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 31–44. MR 1403913
- J. Ginibre and Y. Tsutsumi, Uniqueness of solutions for the generalized Korteweg-de Vries equation, SIAM J. Math. Anal. 20 (1989), no. 6, 1388–1425. MR 1019307, DOI 10.1137/0520091
- Tosio Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Studies in applied mathematics, Adv. Math. Suppl. Stud., vol. 8, Academic Press, New York, 1983, pp. 93–128. MR 759907
- Carlos E. Kenig, Gustavo Ponce, and Luis Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math. 46 (1993), no. 4, 527–620. MR 1211741, DOI 10.1002/cpa.3160460405
- Peter D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 21 (1968), 467–490. MR 235310, DOI 10.1002/cpa.3160210503 MM1 Y. Martel and F. Merle, Instability of solitons for the critical generalized Korteweg–de Vries equation, Geom. Funct. Anal. 11 (2001), 74–123.
- Yvan Martel and Frank Merle, A Liouville theorem for the critical generalized Korteweg-de Vries equation, J. Math. Pures Appl. (9) 79 (2000), no. 4, 339–425. MR 1753061, DOI 10.1016/S0021-7824(00)00159-8 MM3 Y. Martel and F. Merle, Stability of the blow up profile and lower bounds on the blow up rate for the critical generalized KdV equation, to appear in Ann. of Math.
- Frank Merle, Blow-up phenomena for critical nonlinear Schrödinger and Zakharov equations, Proceedings of the International Congress of Mathematicians, Vol. III (Berlin, 1998), 1998, pp. 57–66. MR 1648140 M3 F. Merle, Existence of blow-up solutions in the energy space for the critical generalized KdV equation, J. Amer. Math. Soc. 14 (2001), 555–578.
- Robert M. Miura, The Korteweg-de Vries equation: a survey of results, SIAM Rev. 18 (1976), no. 3, 412–459. MR 404890, DOI 10.1137/1018076
- Michael I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1982/83), no. 4, 567–576. MR 691044, DOI 10.1007/BF01208265
Bibliographic Information
- Yvan Martel
- Affiliation: Département de Mathématiques, Université de Cergy–Pontoise, 2, av. A. Chauvin, 95302 Cergy Pontoise, France
- MR Author ID: 367956
- Email: Yvan.Martel@math.u-cergy.fr
- Frank Merle
- Affiliation: Département de Mathématiques, Université de Cergy–Pontoise, 2, av. A. Chauvin, 95302 Cergy Pontoise, France – and – Institut Universitaire de France
- MR Author ID: 123710
- Email: Frank.Merle@math.u-cergy.fr
- Received by editor(s): March 15, 2001
- Published electronically: March 8, 2002
- © Copyright 2002 American Mathematical Society
- Journal: J. Amer. Math. Soc. 15 (2002), 617-664
- MSC (1991): Primary 35Q53; Secondary 35B05, 35Q51
- DOI: https://doi.org/10.1090/S0894-0347-02-00392-2
- MathSciNet review: 1896235