The planar Cantor sets of zero analytic capacity and the local $T(b)$-Theorem
Authors:
Joan Mateu, Xavier Tolsa and Joan Verdera
Journal:
J. Amer. Math. Soc. 16 (2003), 19-28
MSC (2000):
Primary 30C85; Secondary 42B20, 30E20
DOI:
https://doi.org/10.1090/S0894-0347-02-00401-0
Published electronically:
July 10, 2002
MathSciNet review:
1937197
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper we obtain rather precise estimates for the analytic capacity of a big class of planar Cantors sets. In fact, we show that analytic capacity and positive analytic capacity are comparable for these sets. The main tool for the proof is an appropriate version of the $T(b)$-Theorem.
- Michael Christ, Lectures on singular integral operators, CBMS Regional Conference Series in Mathematics, vol. 77, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1990. MR 1104656
- Michael Christ, A $T(b)$ theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math. 60/61 (1990), no. 2, 601–628. MR 1096400, DOI https://doi.org/10.4064/cm-60-61-2-601-628
- Guy David, Analytic capacity, Calderón-Zygmund operators, and rectifiability, Publ. Mat. 43 (1999), no. 1, 3–25. MR 1697514, DOI https://doi.org/10.5565/PUBLMAT_43199_01
- Alexander M. Davie and Bernt Øksendal, Analytic capacity and differentiability properties of finely harmonic functions, Acta Math. 149 (1982), no. 1-2, 127–152. MR 674169, DOI https://doi.org/10.1007/BF02392352
- V. Ya. Èĭderman, Hausdorff measure and capacity associated with Cauchy potentials, Mat. Zametki 63 (1998), no. 6, 923–934 (Russian, with Russian summary); English transl., Math. Notes 63 (1998), no. 5-6, 813–822. MR 1679225, DOI https://doi.org/10.1007/BF02312776
- John Garnett, Positive length but zero analytic capacity, Proc. Amer. Math. Soc. 24 (1970), 696-699; errata, ibid. 26 (1970), 701. MR 0276456, DOI https://doi.org/10.1090/S0002-9939-1970-0276456-5
- John Garnett, Analytic capacity and measure, Lecture Notes in Mathematics, Vol. 297, Springer-Verlag, Berlin-New York, 1972. MR 0454006 [GY]gyJ. Garnett, S. Yoshinobu, Large sets of zero analytic capacity, Proc. Amer. Math. Soc. 129 (2001), 3543-3548.
- L. D. Ivanov, Variatsii mnozhestv i funktsiĭ, Izdat. “Nauka”, Moscow, 1975 (Russian). Edited by A. G. Vituškin. MR 0476953 [I2]iL. D. Ivanov, On sets of analytic capacity zero, in “Linear and Complex Analysis Problem Book 3" (part II), Lectures Notes in Mathematics 1574, Springer-Verlag, Berlin, 1994, pp. 150–153.
- Peter W. Jones, Square functions, Cauchy integrals, analytic capacity, and harmonic measure, Harmonic analysis and partial differential equations (El Escorial, 1987) Lecture Notes in Math., vol. 1384, Springer, Berlin, 1989, pp. 24–68. MR 1013815, DOI https://doi.org/10.1007/BFb0086793
- Pertti Mattila, On the analytic capacity and curvature of some Cantor sets with non-$\sigma $-finite length, Publ. Mat. 40 (1996), no. 1, 195–204. MR 1397014, DOI https://doi.org/10.5565/PUBLMAT_40196_12
- Takafumi Murai, Construction of $H^1$ functions concerning the estimate of analytic capacity, Bull. London Math. Soc. 19 (1987), no. 2, 154–160. MR 872130, DOI https://doi.org/10.1112/blms/19.2.154
- Xavier Tolsa, $L^2$-boundedness of the Cauchy integral operator for continuous measures, Duke Math. J. 98 (1999), no. 2, 269–304. MR 1695200, DOI https://doi.org/10.1215/S0012-7094-99-09808-3 [T2]t2X. Tolsa, On the analytic capacity $\gamma ^+$, Indiana Univ. Math. J. (51) (2) (2002), 317–344. [T3]T3X. Tolsa, Painlevé’s problem and the semiadditivity of analytic capacity, Acta Math. (to appear). [Uy]uyN. X. Uy, Removable sets of analytic functions satisfying a Lipschitz condition, Ark. Mat. 17 (1979), 19–27.
- Joan Verdera, A weak type inequality for Cauchy transforms of finite measures, Publ. Mat. 36 (1992), no. 2B, 1029–1034 (1993). MR 1210034, DOI https://doi.org/10.5565/PUBLMAT_362B92_19
- Joan Verdera, Removability, capacity and approximation, Complex potential theory (Montreal, PQ, 1993) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 439, Kluwer Acad. Publ., Dordrecht, 1994, pp. 419–473. MR 1332967
- Joan Verdera, $L^2$ boundedness of the Cauchy integral and Menger curvature, Harmonic analysis and boundary value problems (Fayetteville, AR, 2000) Contemp. Math., vol. 277, Amer. Math. Soc., Providence, RI, 2001, pp. 139–158. MR 1840432, DOI https://doi.org/10.1090/conm/277/04543 [Vi1]vi1A. G. Vitushkin, Estimate of the Cauchy integral, Mat. Sb. 71(4) (1966), 515–534. [Vi2]viA. G. Vitushkin, Analytic capacity of sets in problems of approximation theory, Russian Math. Surveys 22 (1967), 139–200.
Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 30C85, 42B20, 30E20
Retrieve articles in all journals with MSC (2000): 30C85, 42B20, 30E20
Additional Information
Joan Mateu
Affiliation:
Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, (Barcelona), Spain
Xavier Tolsa
Affiliation:
Département de Mathématiques, Université de Paris Sud 91405 Orsay, cedex, France
MR Author ID:
639506
ORCID:
0000-0001-7976-5433
Joan Verdera
Affiliation:
Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, (Barcelona), Spain
Keywords:
Analytic capacity,
Cauchy integral,
Cantor sets,
$T(b)$-Theorem,
positive analytic capacity
Received by editor(s):
August 7, 2001
Published electronically:
July 10, 2002
Additional Notes:
The authors were partially supported by the grants BFM 2000-0361, HPRN-2000-0116 and 2001- SGR-00431. The second author was supported by a Marie Curie Fellowship of the European Union under contract HPMFCT-2000-00519.
Article copyright:
© Copyright 2002
American Mathematical Society