Infinitely many hyperbolic 3-manifolds which contain no Reebless foliation
HTML articles powered by AMS MathViewer
- by R. Roberts, J. Shareshian and M. Stein;
- J. Amer. Math. Soc. 16 (2003), 639-679
- DOI: https://doi.org/10.1090/S0894-0347-03-00426-0
- Published electronically: March 3, 2003
- PDF | Request permission
Abstract:
We investigate group actions on simply-connected (second countable but not necessarily Hausdorff) 1-manifolds and describe an infinite family of closed hyperbolic 3-manifolds whose fundamental groups do not act nontrivially on such 1-manifolds. As a corollary we conclude that these 3-manifolds contain no Reebless foliation. In fact, these arguments extend to actions on oriented $\mathbb R$-order trees and hence these 3-manifolds contain no transversely oriented essential lamination; in particular, they are non-Haken.References
- Ian Agol, Bounds on exceptional Dehn filling, Geom. Topol. 4 (2000), 431–449. MR 1799796, DOI 10.2140/gt.2000.4.431
- Mark D. Baker, Covers of Dehn fillings on once-punctured torus bundles, Proc. Amer. Math. Soc. 105 (1989), no. 3, 747–754. MR 964452, DOI 10.1090/S0002-9939-1989-0964452-6
- Mark D. Baker, Covers of Dehn fillings on once-punctured torus bundles. II, Proc. Amer. Math. Soc. 110 (1990), no. 4, 1099–1108. MR 1027087, DOI 10.1090/S0002-9939-1990-1027087-3
- Thierry Barbot, Actions de groupes sur les 1-variétés non séparées et feuilletages de codimension un, Ann. Fac. Sci. Toulouse Math. (6) 7 (1998), no. 4, 559–597 (French, with English and French summaries). MR 1693597, DOI 10.5802/afst.911
- Sterling K. Berberian, Fundamentals of real analysis, Universitext, Springer-Verlag, New York, 1999. MR 1654127, DOI 10.1007/978-1-4612-0549-4
- S. Betley, J. H. Przytycki, and T. Żukowski, Hyperbolic structures on Dehn filling of some punctured-torus bundles over $S^1$, Kobe J. Math. 3 (1987), no. 2, 117–147. MR 908780
- Steven A. Bleiler and Craig D. Hodgson, Spherical space forms and Dehn filling, Topology 35 (1996), no. 3, 809–833. MR 1396779, DOI 10.1016/0040-9383(95)00040-2
- B. H. Bowditch, C. Maclachlan, and A. W. Reid, Arithmetic hyperbolic surface bundles, Math. Ann. 302 (1995), no. 1, 31–60. MR 1329446, DOI 10.1007/BF01444486
- Mark Brittenham, Essential laminations in Seifert-fibered spaces, Topology 32 (1993), no. 1, 61–85. MR 1204407, DOI 10.1016/0040-9383(93)90038-W
- Mark Brittenham, Ramin Naimi, and Rachel Roberts, Graph manifolds and taut foliations, J. Differential Geom. 45 (1997), no. 3, 446–470. MR 1472884 [Ca]ca01 D. Calegari, Promoting essential laminations, I, preprint. [CD03]cd D. Calegari and N. Dunfield, Laminations and groups of homeomorphisms of the circle, Inv. Math., to appear. [CC]cc A. Candel and L. Conlon, Foliations II, preprint. [Ch01]ch I. Chiswell, Introduction to $\Lambda$-trees, World Scientific, Singapore, 2001. [Cl91]cl91 E. Claus, Essential laminations in closed Seifert-fibered spaces, Thesis, University of Texas at Austin, 1991.
- Daryl Cooper, Craig D. Hodgson, and Steven P. Kerckhoff, Three-dimensional orbifolds and cone-manifolds, MSJ Memoirs, vol. 5, Mathematical Society of Japan, Tokyo, 2000. With a postface by Sadayoshi Kojima. MR 1778789
- M. Culler, W. Jaco, and H. Rubinstein, Incompressible surfaces in once-punctured torus bundles, Proc. London Math. Soc. (3) 45 (1982), no. 3, 385–419. MR 675414, DOI 10.1112/plms/s3-45.3.385
- Marc Culler and John W. Morgan, Group actions on $\textbf {R}$-trees, Proc. London Math. Soc. (3) 55 (1987), no. 3, 571–604. MR 907233, DOI 10.1112/plms/s3-55.3.571
- Marc Culler and Karen Vogtmann, A group-theoretic criterion for property $\textrm {FA}$, Proc. Amer. Math. Soc. 124 (1996), no. 3, 677–683. MR 1307506, DOI 10.1090/S0002-9939-96-03217-0 [De32]d A. Denjoy, Sur les courbes définies par les équations différentielles à la surface du tore, J. Math. Pures Appl. 11(1932), 333–375. [Fe]fe S. Fenley, Pseudo-Anosov flows and incompressible tori, preprint.
- W. Floyd and A. Hatcher, Incompressible surfaces in punctured-torus bundles, Topology Appl. 13 (1982), no. 3, 263–282. MR 651509, DOI 10.1016/0166-8641(82)90035-9
- David Gabai, Taut foliations of $3$-manifolds and suspensions of $S^1$, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 1-2, 193–208 (English, with French summary). MR 1162560, DOI 10.5802/aif.1289 [Ga97]g97 D. Gabai, Problems in foliations and laminations, Studies in Advanced Math. 2(2) (1997), 1–33.
- David Gabai, Quasi-minimal semi-Euclidean laminations in $3$-manifolds, Surveys in differential geometry, Vol. III (Cambridge, MA, 1996) Int. Press, Boston, MA, 1998, pp. 195–242. MR 1677889
- David Gabai and William H. Kazez, Order trees and laminations of the plane, Math. Res. Lett. 4 (1997), no. 4, 603–616. MR 1470429, DOI 10.4310/MRL.1997.v4.n4.a14
- David Gabai and William H. Kazez, Group negative curvature for $3$-manifolds with genuine laminations, Geom. Topol. 2 (1998), 65–77. MR 1619168, DOI 10.2140/gt.1998.2.65
- David Gabai and Ulrich Oertel, Essential laminations in $3$-manifolds, Ann. of Math. (2) 130 (1989), no. 1, 41–73. MR 1005607, DOI 10.2307/1971476
- Sue E. Goodman, Closed leaves in foliations of codimension one, Comment. Math. Helv. 50 (1975), no. 3, 383–388. MR 423371, DOI 10.1007/BF02565757
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- Allen Hatcher, Some examples of essential laminations in $3$-manifolds, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 1-2, 313–325 (English, with French summary). MR 1162564, DOI 10.5802/aif.1293
- Craig D. Hodgson, G. Robert Meyerhoff, and Jeffrey R. Weeks, Surgeries on the Whitehead link yield geometrically similar manifolds, Topology ’90 (Columbus, OH, 1990) Ohio State Univ. Math. Res. Inst. Publ., vol. 1, de Gruyter, Berlin, 1992, pp. 195–206. MR 1184411
- Troels Jørgensen, Compact $3$-manifolds of constant negative curvature fibering over the circle, Ann. of Math. (2) 106 (1977), no. 1, 61–72. MR 450546, DOI 10.2307/1971158
- Marc Lackenby, Word hyperbolic Dehn surgery, Invent. Math. 140 (2000), no. 2, 243–282. MR 1756996, DOI 10.1007/s002220000047
- Joseph D. Masters, Virtual homology of surgered torus bundles, Pacific J. Math. 195 (2000), no. 1, 205–223. MR 1781620, DOI 10.2140/pjm.2000.195.205
- Darryl McCullough, Automorphisms of punctured-surface bundles, Geometry and topology (Athens, Ga., 1985) Lecture Notes in Pure and Appl. Math., vol. 105, Dekker, New York, 1987, pp. 179–209. MR 873294
- John W. Morgan, $\Lambda$-trees and their applications, Bull. Amer. Math. Soc. (N.S.) 26 (1992), no. 1, 87–112. MR 1100579, DOI 10.1090/S0273-0979-1992-00237-9
- John W. Morgan and Peter B. Shalen, Degenerations of hyperbolic structures. II. Measured laminations in $3$-manifolds, Ann. of Math. (2) 127 (1988), no. 2, 403–456. MR 932305, DOI 10.2307/2007061 [Ni17]ni17 J. Nielsen, Die Isomorphismengruppe der allgemeinen unendlichen Gruppe mit zwei Erzeugenden, Math. Ann. 78 (1917), 385–397.
- S. P. Novikov, The topology of foliations, Trudy Moskov. Mat. Obšč. 14 (1965), 248–278 (Russian). MR 200938
- Walter D. Neumann and Alan W. Reid, Arithmetic of hyperbolic manifolds, Topology ’90 (Columbus, OH, 1990) Ohio State Univ. Math. Res. Inst. Publ., vol. 1, de Gruyter, Berlin, 1992, pp. 273–310. MR 1184416
- Carlos Frederico Borges Palmeira, Open manifolds foliated by planes, Ann. of Math. (2) 107 (1978), no. 1, 109–131. MR 501018, DOI 10.2307/1971256
- Frédéric Paulin, Actions de groupes sur les arbres, Astérisque 241 (1997), Exp. No. 808, 3, 97–137 (French, with French summary). Séminaire Bourbaki, Vol. 1995/96. MR 1472536
- Józef H. Przytycki, Nonorientable, incompressible surfaces of genus $3$ in $M_\varphi ({\lambda \over \mu })$ manifolds, Collect. Math. 34 (1983), no. 1, 37–79. MR 747857
- Józef H. Przytycki, Incompressibility of surfaces with four boundary components after Dehn surgery, Demonstratio Math. 17 (1984), no. 1, 119–126. MR 760346
- Alan W. Reid, A non-Haken hyperbolic $3$-manifold covered by a surface bundle, Pacific J. Math. 167 (1995), no. 1, 163–182. MR 1318168, DOI 10.2140/pjm.1995.167.163
- Alan W. Reid and Shicheng Wang, Non-Haken $3$-manifolds are not large with respect to mappings of non-zero degree, Comm. Anal. Geom. 7 (1999), no. 1, 105–132. MR 1674109, DOI 10.4310/CAG.1999.v7.n1.a4 [RSS]rss R. Roberts, J. Shareshian and M. Stein, in preparation.
- Rachel Roberts and Melanie Stein, Group actions on order trees, Topology Appl. 115 (2001), no. 2, 175–201. MR 1847462, DOI 10.1016/S0166-8641(00)00060-2
- Dale Rolfsen, Knots and links, Mathematics Lecture Series, No. 7, Publish or Perish, Inc., Berkeley, CA, 1976. MR 515288
- Paul A. Schweitzer, Counterexamples to the Seifert conjecture and opening closed leaves of foliations, Ann. of Math. (2) 100 (1974), 386–400. MR 356086, DOI 10.2307/1971077
- Peter B. Shalen, Dendrology of groups: an introduction, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 265–319. MR 919830, DOI 10.1007/978-1-4613-9586-7_{4}
- Peter B. Shalen, Dendrology and its applications, Group theory from a geometrical viewpoint (Trieste, 1990) World Sci. Publ., River Edge, NJ, 1991, pp. 543–616. MR 1170376
- Jean-Pierre Serre, Trees, Springer-Verlag, Berlin-New York, 1980. Translated from the French by John Stillwell. MR 607504, DOI 10.1007/978-3-642-61856-7 [Th79]th79 W. Thurston, The geometry and topology of three-manifolds, Princeton, 1979.
- William P. Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 3, 357–381. MR 648524, DOI 10.1090/S0273-0979-1982-15003-0
- William P. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. (N.S.) 19 (1988), no. 2, 417–431. MR 956596, DOI 10.1090/S0273-0979-1988-15685-6 [We85]we85 J. Weeks, Hyperbolic structures on three-manifolds, Thesis, Princeton University, 1985.
Bibliographic Information
- R. Roberts
- Affiliation: Department of Mathematics, Washington University, St Louis, Missouri 63130
- MR Author ID: 600757
- Email: roberts@math.wustl.edu
- J. Shareshian
- Affiliation: Department of Mathematics, Washington University, St Louis, Missouri 63130
- MR Author ID: 618746
- Email: shareshi@math.wustl.edu
- M. Stein
- Affiliation: Department of Mathematics, Trinity College, Hartford, Connecticut 06106
- Email: Melanie.Stein@mail.cc.trincoll.edu
- Received by editor(s): June 2, 2002
- Published electronically: March 3, 2003
- Additional Notes: The first author was partially supported by National Science Foundation grant DMS-9971333
The second author was partially supported by National Science Foundation grant DMS-0070757
The third author was partially supported by a Trinity College Faculty Research Grant - © Copyright 2003 American Mathematical Society
- Journal: J. Amer. Math. Soc. 16 (2003), 639-679
- MSC (2000): Primary 57M25; Secondary 57R30
- DOI: https://doi.org/10.1090/S0894-0347-03-00426-0
- MathSciNet review: 1969207