Cusps and -modules
Authors:
David Ben-Zvi and Thomas Nevins
Journal:
J. Amer. Math. Soc. 17 (2004), 155-179
MSC (2000):
Primary 14F10, 13N10, 16S32, 32C38
DOI:
https://doi.org/10.1090/S0894-0347-03-00439-9
Published electronically:
September 24, 2003
MathSciNet review:
2015332
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We study interactions between the categories of -modules on smooth and singular varieties. For a large class of singular varieties
, we use an extension of the Grothendieck-Sato formula to show that
-modules are equivalent to stratifications on
, and as a consequence are unaffected by a class of homeomorphisms, the cuspidal quotients. In particular, when
has a smooth bijective normalization
, we obtain a Morita equivalence of
and
and a Kashiwara theorem for
, thereby solving conjectures of Hart-Smith and Berest-Etingof-Ginzburg (generalizing results for complex curves and surfaces and rational Cherednik algebras). We also use this equivalence to enlarge the category of induced
-modules on a smooth variety
by collecting induced
-modules on varying cuspidal quotients. The resulting cusp-induced
-modules possess both the good properties of induced
-modules (in particular, a Riemann-Hilbert description) and, when
is a curve, a simple characterization as the generically torsion-free
-modules.
- [AMM] H. Airault, H. P. McKean, and J. Moser, Rational and elliptic solutions of the Korteweg-de Vries equation and a related many-body problem, Comm. Pure Appl. Math. 30 (1977), no. 1, 95–148. MR 649926, https://doi.org/10.1002/cpa.3160300106
- [AM] M. Artin and B. Mazur, Etale homotopy, Lecture Notes in Mathematics, No. 100, Springer-Verlag, Berlin-New York, 1969. MR 0245577
- [BGK1]
V. Baranovsky, V. Ginzburg, and A. Kuznetsov, Quiver varieties and a noncommutative
, Compositio Math. 134 (2002), no. 3, 283-318.
- [BGK2] V. Baranovsky, V. Ginzburg, and A. Kuznetsov, Wilson's Grassmannian and a noncommutative quadric, Int. Math. Res. Not. 2003, no. 21, 1155-1197.
- [BB] A. Beĭlinson and J. Bernstein, A proof of Jantzen conjectures, I. M. Gel′fand Seminar, Adv. Soviet Math., vol. 16, Amer. Math. Soc., Providence, RI, 1993, pp. 1–50. MR 1237825
- [BD1]
A. Beilinson and V. Drinfeld, Quantization of Hitchin's integrable system and Hecke eigensheaves, in preparation, available at www.math.uchicago.edu/
benzvi.
- [BD2]
A. Beilinson and V. Drinfeld, Chiral algebras, in preparation, available at www.math.uchicago.edu/
benzvi.
- [BS] A. A. Beĭlinson and V. V. Schechtman, Determinant bundles and Virasoro algebras, Comm. Math. Phys. 118 (1988), no. 4, 651–701. MR 962493
- [BN1] D. Ben-Zvi and T. Nevins, Solitons and Many-Body Systems, in preparation.
- [BN2]
D. Ben-Zvi and T. Nevins,
-algebras and
-moduli spaces, in preparation.
- [BEG] Y. Berest, P. Etingof, and V. Ginzburg, Cherednik algebras and differential operators on quasi-invariants, Duke Math. J. 118 (2003), no. 2, 279-337.
- [BW1] Yuri Berest and George Wilson, Automorphisms and ideals of the Weyl algebra, Math. Ann. 318 (2000), no. 1, 127–147. MR 1785579, https://doi.org/10.1007/s002080000115
- [BW2] Yuri Berest and George Wilson, Ideal classes of the Weyl algebra and noncommutative projective geometry, Int. Math. Res. Not. 26 (2002), 1347–1396. With an appendix by Michel Van den Bergh. MR 1904791, https://doi.org/10.1155/S1073792802108051
- [BW3] Y. Berest and G. Wilson, Differential isomorphism and equivalence of algebraic varieties, preprint arXiv: math.AG/0304320.
- [BGG] I. N. Bernšteĭn, I. M. Gel′fand, and S. I. Gel′fand, Differential operators on a cubic cone, Uspehi Mat. Nauk 27 (1972), no. 1(163), 185–190 (Russian). MR 0385159
- [Be1] Pierre Berthelot, Cohomologie cristalline des schémas de caractéristique 𝑝>0, Lecture Notes in Mathematics, Vol. 407, Springer-Verlag, Berlin-New York, 1974 (French). MR 0384804
- [Be2] Pierre Berthelot, 𝒟-modules arithmétiques. I. Opérateurs différentiels de niveau fini, Ann. Sci. École Norm. Sup. (4) 29 (1996), no. 2, 185–272 (French, with English summary). MR 1373933
- [Be3] Pierre Berthelot, 𝒟-modules arithmétiques. II. Descente par Frobenius, Mém. Soc. Math. Fr. (N.S.) 81 (2000), vi+136 (French, with English and French summaries). MR 1775613
- [CH1] R. C. Cannings and M. P. Holland, Right ideals of rings of differential operators, J. Algebra 167 (1994), no. 1, 116–141. MR 1282820, https://doi.org/10.1006/jabr.1994.1179
- [CH2] Rob C. Cannings and Martin P. Holland, Limits of compactified Jacobians and 𝒟-modules on smooth projective curves, Adv. Math. 135 (1998), no. 2, 287–302. MR 1620838, https://doi.org/10.1006/aima.1997.1710
- [CS] M. Chamarie and J. T. Stafford, When rings of differential operators are maximal orders, Math. Proc. Cambridge Philos. Soc. 102 (1987), no. 3, 399–410. MR 906614, https://doi.org/10.1017/S0305004100067451
- [Co] Brian Conrad, Grothendieck duality and base change, Lecture Notes in Mathematics, vol. 1750, Springer-Verlag, Berlin, 2000. MR 1804902
- [De] P. Deligne, Catégories tannakiennes, The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, pp. 111–195 (French). MR 1106898
- [DE] M. G. M. van Doorn and A. R. P. van den Essen, 𝒟_{𝓃}-modules with support on a curve, Publ. Res. Inst. Math. Sci. 23 (1987), no. 6, 937–953. MR 935708, https://doi.org/10.2977/prims/1195175865
- [Eis] David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960
- [EG] Pavel Etingof and Victor Ginzburg, Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism, Invent. Math. 147 (2002), no. 2, 243–348. MR 1881922, https://doi.org/10.1007/s002220100171
- [EGA]
A.
Grothendieck, Éléments de géométrie
algébrique. III. Étude cohomologique des faisceaux
cohérents. II, Inst. Hautes Études Sci. Publ. Math.
17 (1963), 91 (French). MR
163911
A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. I, Inst. Hautes Études Sci. Publ. Math. 20 (1964), 259 (French). MR 173675
A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II, Inst. Hautes Études Sci. Publ. Math. 24 (1965), 231 (French). MR 199181
A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III, Inst. Hautes Études Sci. Publ. Math. 28 (1966), 255. MR 217086
A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Inst. Hautes Études Sci. Publ. Math. 32 (1967), 361 (French). MR 238860 - [Gro] A. Grothendieck, Crystals and the de Rham cohomology of schemes, Dix exposés sur la cohomologie des schémas, Adv. Stud. Pure Math., vol. 3, North-Holland, Amsterdam, 1968, pp. 306–358. Notes by I. Coates and O. Jussila. MR 269663
- [HS] R. Hart and S. P. Smith, Differential operators on some singular surfaces, Bull. London Math. Soc. 19 (1987), no. 2, 145–148. MR 872128, https://doi.org/10.1112/blms/19.2.145
- [Ha1] Robin Hartshorne, Residues and duality, Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64. With an appendix by P. Deligne. Lecture Notes in Mathematics, No. 20, Springer-Verlag, Berlin-New York, 1966. MR 0222093
- [Ha2] Robin Hartshorne, Local cohomology, A seminar given by A. Grothendieck, Harvard University, Fall, vol. 1961, Springer-Verlag, Berlin-New York, 1967. MR 0224620
- [Ha3] Robin Hartshorne, Cohomological dimension of algebraic varieties, Ann. of Math. (2) 88 (1968), 403–450. MR 232780, https://doi.org/10.2307/1970720
- [Ho] M. Hovey, Morita theory for Hopf algebroids and presheaves of groupoids, Amer. J. Math. 124 (2002), no.6, 1289-1318.
- [SGA5] Cohomologie 𝑙-adique et fonctions 𝐿, Lecture Notes in Mathematics, Vol. 589, Springer-Verlag, Berlin-New York, 1977 (French). Séminaire de Géometrie Algébrique du Bois-Marie 1965–1966 (SGA 5); Edité par Luc Illusie. MR 0491704
- [J] A. G. Jones, Some Morita equivalences of rings of differential operators, J. Algebra 173 (1995), no. 1, 180–199. MR 1327366, https://doi.org/10.1006/jabr.1995.1083
- [Kr1] Igor Moiseevich Krichever, Rational solutions of the Kadomcev-Petviašvili equation and the integrable systems of 𝑁 particles on a line, Funkcional. Anal. i Priložen. 12 (1978), no. 1, 76–78 (Russian). MR 0488139
- [Kr2] Igor Moiseevich Krichever, Elliptic solutions of the Kadomcev-Petviašvili equations, and integrable systems of particles, Funktsional. Anal. i Prilozhen. 14 (1980), no. 4, 45–54, 95 (Russian). MR 595728
- [Mu] Ian M. Musson, Some rings of differential operators which are Morita equivalent to the Weyl algebra 𝐴₁, Proc. Amer. Math. Soc. 98 (1986), no. 1, 29–30. MR 848868, https://doi.org/10.1090/S0002-9939-1986-0848868-1
- [Sa] Morihiko Saito, Induced 𝒟-modules and differential complexes, Bull. Soc. Math. France 117 (1989), no. 3, 361–387 (English, with French summary). MR 1020112
- [Sh] Takahiro Shiota, Calogero-Moser hierarchy and KP hierarchy, J. Math. Phys. 35 (1994), no. 11, 5844–5849. MR 1299922, https://doi.org/10.1063/1.530713
- [Sm] S. P. Smith, An example of a ring Morita equivalent to the Weyl algebra 𝐴₁, J. Algebra 73 (1981), no. 2, 552–555. MR 640048, https://doi.org/10.1016/0021-8693(81)90334-3
- [SS] S. P. Smith and J. T. Stafford, Differential operators on an affine curve, Proc. London Math. Soc. (3) 56 (1988), no. 2, 229–259. MR 922654, https://doi.org/10.1112/plms/s3-56.2.229
- [W] George Wilson, Collisions of Calogero-Moser particles and an adelic Grassmannian, Invent. Math. 133 (1998), no. 1, 1–41. With an appendix by I. G. Macdonald. MR 1626461, https://doi.org/10.1007/s002220050237
Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 14F10, 13N10, 16S32, 32C38
Retrieve articles in all journals with MSC (2000): 14F10, 13N10, 16S32, 32C38
Additional Information
David Ben-Zvi
Affiliation:
Department of Mathematics, University of Chicago, Chicago, Illinois 60637
Address at time of publication:
Department of Mathematics, University of Texas, Austin, Texas 78712-0257
Email:
benzvi@math.uchicago.edu, benzvi@math.utexas.edu
Thomas Nevins
Affiliation:
Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1109
Email:
nevins@umich.edu
DOI:
https://doi.org/10.1090/S0894-0347-03-00439-9
Keywords:
${\mathcal D}$-modules,
Grothendieck-Sato formula,
Morita equivalence
Received by editor(s):
December 6, 2002
Published electronically:
September 24, 2003
Article copyright:
© Copyright 2003
American Mathematical Society