$L^p$ boundedness of discrete singular Radon transforms
HTML articles powered by AMS MathViewer
- by Alexandru D. Ionescu and Stephen Wainger;
- J. Amer. Math. Soc. 19 (2006), 357-383
- DOI: https://doi.org/10.1090/S0894-0347-05-00508-4
- Published electronically: October 24, 2005
- PDF | Request permission
Abstract:
We prove that if $K:\mathbb {R}^{d_1}\to \mathbb {C}$ is a Calderón–Zygmund kernel and $P:\mathbb {R}^{d_1}\to \mathbb {R}^{d_2}$ is a polynomial of degree $A\geq 1$ with real coefficients, then the discrete singular Radon transform operator \begin{equation*} T(f)(x)=\sum _{n\in \mathbb {Z}^{d_1}\setminus \{0\}}f(x-P(n))K(n) \end{equation*} extends to a bounded operator on $L^p(\mathbb {R}^{d_2})$, $1<p<\infty$. This gives a positive answer to an earlier conjecture of E. M. Stein and S. Wainger.References
- G. I. Arkhipov and K. I. Oskolkov, A special trigonometric series and its applications, Mat. Sb. (N.S.) 134(176) (1987), no. 2, 147–157, 287 (Russian); English transl., Math. USSR-Sb. 62 (1989), no. 1, 145–155. MR 922412, DOI 10.1070/SM1989v062n01ABEH003232
- J. Bourgain, On the maximal ergodic theorem for certain subsets of the integers, Israel J. Math. 61 (1988), no. 1, 39–72. MR 937581, DOI 10.1007/BF02776301
- J. Bourgain, On the maximal ergodic theorem for certain subsets of the integers, Israel J. Math. 61 (1988), no. 1, 39–72. MR 937581, DOI 10.1007/BF02776301
- Jean Bourgain, Pointwise ergodic theorems for arithmetic sets, Inst. Hautes Études Sci. Publ. Math. 69 (1989), 5–45. With an appendix by the author, Harry Furstenberg, Yitzhak Katznelson and Donald S. Ornstein. MR 1019960
- Michael Christ, Hilbert transforms along curves. I. Nilpotent groups, Ann. of Math. (2) 122 (1985), no. 3, 575–596. MR 819558, DOI 10.2307/1971330
- Michael Christ, Alexander Nagel, Elias M. Stein, and Stephen Wainger, Singular and maximal Radon transforms: analysis and geometry, Ann. of Math. (2) 150 (1999), no. 2, 489–577. MR 1726701, DOI 10.2307/121088
- Karel de Leeuw, On $L_{p}$ multipliers, Ann. of Math. (2) 81 (1965), 364–379. MR 174937, DOI 10.2307/1970621
- Eugene B. Fabes, Singular integrals and partial differential equations of parabolic type, Studia Math. 28 (1966/67), 81–131. MR 213744, DOI 10.4064/sm-28-1-81-131
- Michael Greenblatt, Boundedness of singular Radon transforms on $L^p$ spaces under a finite-type condition, Amer. J. Math. 123 (2001), no. 6, 1009–1053. MR 1867310
- Alexandru D. Ionescu, An endpoint estimate for the discrete spherical maximal function, Proc. Amer. Math. Soc. 132 (2004), no. 5, 1411–1417. MR 2053347, DOI 10.1090/S0002-9939-03-07207-1
- A. Magyar, E. M. Stein, and S. Wainger, Discrete analogues in harmonic analysis: spherical averages, Ann. of Math. (2) 155 (2002), no. 1, 189–208. MR 1888798, DOI 10.2307/3062154
- D. Müller, Calderón-Zygmund kernels carried by linear subspaces of homogeneous nilpotent Lie algebras, Invent. Math. 73 (1983), no. 3, 467–489. MR 718942, DOI 10.1007/BF01388440
- Alexander Nagel, Néstor Rivière, and Stephen Wainger, On Hilbert transforms along curves, Bull. Amer. Math. Soc. 80 (1974), 106–108. MR 450899, DOI 10.1090/S0002-9904-1974-13374-4
- Alexander Nagel, Elias M. Stein, and Stephen Wainger, Hilbert transforms and maximal functions related to variable curves, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part 1, Amer. Math. Soc., Providence, RI, 1979, pp. 95–98. MR 545242
- Melvyn B. Nathanson, Additive number theory, Graduate Texts in Mathematics, vol. 164, Springer-Verlag, New York, 1996. The classical bases. MR 1395371, DOI 10.1007/978-1-4757-3845-2
- Daniel M. Oberlin, Two discrete fractional integrals, Math. Res. Lett. 8 (2001), no. 1-2, 1–6. MR 1825254, DOI 10.4310/MRL.2001.v8.n1.a1
- D. H. Phong and E. M. Stein, Hilbert integrals, singular integrals, and Radon transforms. I, Acta Math. 157 (1986), no. 1-2, 99–157. MR 857680, DOI 10.1007/BF02392592
- José L. Rubio de Francia, A Littlewood-Paley inequality for arbitrary intervals, Rev. Mat. Iberoamericana 1 (1985), no. 2, 1–14. MR 850681, DOI 10.4171/RMI/7
- Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
- Elias M. Stein and Stephen Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc. 84 (1978), no. 6, 1239–1295. MR 508453, DOI 10.1090/S0002-9904-1978-14554-6
- E. M. Stein and S. Wainger, Discrete analogues of singular Radon transforms, Bull. Amer. Math. Soc. (N.S.) 23 (1990), no. 2, 537–544. MR 1056560, DOI 10.1090/S0273-0979-1990-15973-7
- Elias M. Stein and Stephen Wainger, Discrete analogues in harmonic analysis. I. $l^2$ estimates for singular Radon transforms, Amer. J. Math. 121 (1999), no. 6, 1291–1336. MR 1719802
- E. M. Stein and S. Wainger, Discrete analogues in harmonic analysis. II. Fractional integration, J. Anal. Math. 80 (2000), 335–355. MR 1771530, DOI 10.1007/BF02791541
- Elias M. Stein and Stephen Wainger, Oscillatory integrals related to Carleson’s theorem, Math. Res. Lett. 8 (2001), no. 5-6, 789–800. MR 1879821, DOI 10.4310/MRL.2001.v8.n6.a9
- Elias M. Stein and Stephen Wainger, Two discrete fractional integral operators revisited, J. Anal. Math. 87 (2002), 451–479. Dedicated to the memory of Thomas H. Wolff. MR 1945293, DOI 10.1007/BF02868485
Bibliographic Information
- Alexandru D. Ionescu
- Affiliation: Department of Mathematics, University of Wisconsin, 480 Lincoln Drive, Van Vleck Hall, Madison, Wisconsin 53706
- MR Author ID: 660963
- Email: ionescu@math.wisc.edu
- Stephen Wainger
- Affiliation: Department of Mathematics, University of Wisconsin, 480 Lincoln Drive, Van Vleck Hall, Madison, Wisconsin 53706-1313
- MR Author ID: 179960
- Email: wainger@math.wisc.edu
- Received by editor(s): February 27, 2004
- Published electronically: October 24, 2005
- Additional Notes: The first author was supported in part by an NSF grant and an Alfred P. Sloan research fellowship
The second author was supported in part by an NSF grant - © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 19 (2006), 357-383
- MSC (1991): Primary 11L07, 42B20
- DOI: https://doi.org/10.1090/S0894-0347-05-00508-4
- MathSciNet review: 2188130