Heegaard surfaces and measured laminations, II: Non-Haken 3–manifolds
HTML articles powered by AMS MathViewer
- by Tao Li;
- J. Amer. Math. Soc. 19 (2006), 625-657
- DOI: https://doi.org/10.1090/S0894-0347-06-00520-0
- Published electronically: February 3, 2006
- PDF | Request permission
Abstract:
A famous example of Casson and Gordon shows that a Haken 3–manifold can have an infinite family of irreducible Heegaard splittings with different genera. In this paper, we prove that a closed non-Haken 3–manifold has only finitely many irreducible Heegaard splittings, up to isotopy. This is much stronger than the generalized Waldhausen conjecture. Another immediate corollary is that for any irreducible non-Haken 3–manifold $M$, there is a number $N$ such that any two Heegaard splittings of $M$ are equivalent after at most $N$ stabilizations.References
- Ian Agol and Tao Li, An algorithm to detect laminar 3-manifolds, Geom. Topol. 7 (2003), 287–309. MR 1988287, DOI 10.2140/gt.2003.7.287
- M. Boileau, D. J. Collins, and H. Zieschang, Genus $2$ Heegaard decompositions of small Seifert manifolds, Ann. Inst. Fourier (Grenoble) 41 (1991), no. 4, 1005–1024 (English, with French summary). MR 1150575, DOI 10.5802/aif.1282
- Francis Bonahon and Jean-Pierre Otal, Scindements de Heegaard des espaces lenticulaires, Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 3, 451–466 (1984) (French). MR 740078, DOI 10.24033/asens.1455
- A. J. Casson and C. McA. Gordon, Reducing Heegaard splittings, Topology Appl. 27 (1987), no. 3, 275–283. MR 918537, DOI 10.1016/0166-8641(87)90092-7 CG2 Andrew Casson and Cameron Gordon, unpublished.
- W. Floyd and U. Oertel, Incompressible surfaces via branched surfaces, Topology 23 (1984), no. 1, 117–125. MR 721458, DOI 10.1016/0040-9383(84)90031-4
- David Gabai, Foliations and $3$-manifolds, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990) Math. Soc. Japan, Tokyo, 1991, pp. 609–619. MR 1159248
- David Gabai and Ulrich Oertel, Essential laminations in $3$-manifolds, Ann. of Math. (2) 130 (1989), no. 1, 41–73. MR 1005607, DOI 10.2307/1971476
- Wolfgang Haken, Some results on surfaces in $3$-manifolds, Studies in Modern Topology, Studies in Mathematics, Vol. 5, Math. Assoc. America, 1968, pp. 39–98. MR 224071
- A. E. Hatcher, Measured lamination spaces for surfaces, from the topological viewpoint, Topology Appl. 30 (1988), no. 1, 63–88. MR 964063, DOI 10.1016/0166-8641(88)90081-8
- Klaus Johannson, Heegaard surfaces in Haken $3$-manifolds, Bull. Amer. Math. Soc. (N.S.) 23 (1990), no. 1, 91–98. MR 1027902, DOI 10.1090/S0273-0979-1990-15910-5
- Klaus Johannson, Topology and combinatorics of 3-manifolds, Lecture Notes in Mathematics, vol. 1599, Springer-Verlag, Berlin, 1995. MR 1439249, DOI 10.1007/BFb0074005
- Tsuyoshi Kobayashi, A construction of $3$-manifolds whose homeomorphism classes of Heegaard splittings have polynomial growth, Osaka J. Math. 29 (1992), no. 4, 653–674. MR 1192734
- Marc Lackenby, The asymptotic behaviour of Heegaard genus, Math. Res. Lett. 11 (2004), no. 2-3, 139–149. MR 2067463, DOI 10.4310/MRL.2004.v11.n2.a1
- Tao Li, Laminar branched surfaces in 3-manifolds, Geom. Topol. 6 (2002), 153–194. MR 1914567, DOI 10.2140/gt.2002.6.153
- Tao Li, Boundary curves of surfaces with the 4-plane property, Geom. Topol. 6 (2002), 609–647. MR 1941725, DOI 10.2140/gt.2002.6.609 L2 Tao Li, An algorithm to find vertical tori in small Seifert fiber spaces. Preprint. arXiv: math.GT/0209107. L4 Tao Li, Heegaard surfaces and measured laminations, I: The Waldhausen conjecture. Preprint. arXiv:math.GT; also available at: www2.bc.edu/˜taoli/publications.html.
- J. Masters, W. Menasco, and X. Zhang, Heegaard splittings and virtually Haken Dehn filling, New York J. Math. 10 (2004), 133–150. MR 2052369
- W. Menasco, Closed incompressible surfaces in alternating knot and link complements, Topology 23 (1984), no. 1, 37–44. MR 721450, DOI 10.1016/0040-9383(84)90023-5
- John W. Morgan and Peter B. Shalen, Degenerations of hyperbolic structures. II. Measured laminations in $3$-manifolds, Ann. of Math. (2) 127 (1988), no. 2, 403–456. MR 932305, DOI 10.2307/2007061
- Yoav Moriah, Heegaard splittings of Seifert fibered spaces, Invent. Math. 91 (1988), no. 3, 465–481. MR 928492, DOI 10.1007/BF01388781
- Yoav Moriah and Jennifer Schultens, Irreducible Heegaard splittings of Seifert fibered spaces are either vertical or horizontal, Topology 37 (1998), no. 5, 1089–1112. MR 1650355, DOI 10.1016/S0040-9383(97)00072-4 MSS Yoav Moriah, Saul Schleimer, and Eric Sedgwick, Heegaard splittings of the form H + nK, to appear in Communications in Analysis and Geometry, arXiv:math.GT/0408002.
- Ulrich Oertel, Measured laminations in $3$-manifolds, Trans. Amer. Math. Soc. 305 (1988), no. 2, 531–573. MR 924769, DOI 10.1090/S0002-9947-1988-0924769-1 P Parris, Pretzel Knots. Ph.D. Thesis, Princeton University (1978).
- J. H. Rubinstein, Polyhedral minimal surfaces, Heegaard splittings and decision problems for $3$-dimensional manifolds, Geometric topology (Athens, GA, 1993) AMS/IP Stud. Adv. Math., vol. 2, Amer. Math. Soc., Providence, RI, 1997, pp. 1–20. MR 1470718, DOI 10.1090/amsip/002.1/01
- Hyam Rubinstein and Martin Scharlemann, Comparing Heegaard splittings of non-Haken $3$-manifolds, Topology 35 (1996), no. 4, 1005–1026. MR 1404921, DOI 10.1016/0040-9383(95)00055-0
- Martin Scharlemann, Local detection of strongly irreducible Heegaard splittings, Topology Appl. 90 (1998), no. 1-3, 135–147. MR 1648310, DOI 10.1016/S0166-8641(97)00184-3
- E. Sedgwick, An infinite collection of Heegaard splittings that are equivalent after one stabilization, Math. Ann. 308 (1997), no. 1, 65–72. MR 1446199, DOI 10.1007/s002080050064
- Michelle Stocking, Almost normal surfaces in $3$-manifolds, Trans. Amer. Math. Soc. 352 (2000), no. 1, 171–207. MR 1491877, DOI 10.1090/S0002-9947-99-02296-5
- Friedhelm Waldhausen, Heegaard-Zerlegungen der $3$-Sphäre, Topology 7 (1968), 195–203 (German). MR 227992, DOI 10.1016/0040-9383(68)90027-X
- Friedhelm Waldhausen, Some problems on $3$-manifolds, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, RI, 1978, pp. 313–322. MR 520549
- Ying-Qing Wu, Dehn surgery on arborescent knots, J. Differential Geom. 43 (1996), no. 1, 171–197. MR 1424423
Bibliographic Information
- Tao Li
- Affiliation: Department of Mathematics, Boston College, Chestnut Hill, Massachusetts, 02167-3806
- Email: taoli@bc.edu
- Received by editor(s): November 24, 2004
- Published electronically: February 3, 2006
- Additional Notes: Partially supported by NSF grants DMS-0102316 and DMS-0406038
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 19 (2006), 625-657
- MSC (2000): Primary 57N10, 57M50; Secondary 57M25
- DOI: https://doi.org/10.1090/S0894-0347-06-00520-0
- MathSciNet review: 2220101