## Heegaard surfaces and measured laminations, II: Non-Haken 3–manifolds

HTML articles powered by AMS MathViewer

- by Tao Li
- J. Amer. Math. Soc.
**19**(2006), 625-657 - DOI: https://doi.org/10.1090/S0894-0347-06-00520-0
- Published electronically: February 3, 2006
- PDF | Request permission

## Abstract:

A famous example of Casson and Gordon shows that a Haken 3–manifold can have an infinite family of irreducible Heegaard splittings with different genera. In this paper, we prove that a closed non-Haken 3–manifold has only finitely many irreducible Heegaard splittings, up to isotopy. This is much stronger than the generalized Waldhausen conjecture. Another immediate corollary is that for any irreducible non-Haken 3–manifold $M$, there is a number $N$ such that any two Heegaard splittings of $M$ are equivalent after at most $N$ stabilizations.## References

- Ian Agol and Tao Li,
*An algorithm to detect laminar 3-manifolds*, Geom. Topol.**7**(2003), 287–309. MR**1988287**, DOI 10.2140/gt.2003.7.287 - M. Boileau, D. J. Collins, and H. Zieschang,
*Genus $2$ Heegaard decompositions of small Seifert manifolds*, Ann. Inst. Fourier (Grenoble)**41**(1991), no. 4, 1005–1024 (English, with French summary). MR**1150575**, DOI 10.5802/aif.1282 - Francis Bonahon and Jean-Pierre Otal,
*Scindements de Heegaard des espaces lenticulaires*, Ann. Sci. École Norm. Sup. (4)**16**(1983), no. 3, 451–466 (1984) (French). MR**740078**, DOI 10.24033/asens.1455 - A. J. Casson and C. McA. Gordon,
*Reducing Heegaard splittings*, Topology Appl.**27**(1987), no. 3, 275–283. MR**918537**, DOI 10.1016/0166-8641(87)90092-7
CG2 Andrew Casson and Cameron Gordon, unpublished.
- W. Floyd and U. Oertel,
*Incompressible surfaces via branched surfaces*, Topology**23**(1984), no. 1, 117–125. MR**721458**, DOI 10.1016/0040-9383(84)90031-4 - David Gabai,
*Foliations and $3$-manifolds*, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990) Math. Soc. Japan, Tokyo, 1991, pp. 609–619. MR**1159248** - David Gabai and Ulrich Oertel,
*Essential laminations in $3$-manifolds*, Ann. of Math. (2)**130**(1989), no. 1, 41–73. MR**1005607**, DOI 10.2307/1971476 - Wolfgang Haken,
*Some results on surfaces in $3$-manifolds*, Studies in Modern Topology, Math. Assoc. America, Buffalo, N.Y.; distributed by Prentice-Hall, Englewood Cliffs, N.J., 1968, pp. 39–98. MR**0224071** - A. E. Hatcher,
*Measured lamination spaces for surfaces, from the topological viewpoint*, Topology Appl.**30**(1988), no. 1, 63–88. MR**964063**, DOI 10.1016/0166-8641(88)90081-8 - Klaus Johannson,
*Heegaard surfaces in Haken $3$-manifolds*, Bull. Amer. Math. Soc. (N.S.)**23**(1990), no. 1, 91–98. MR**1027902**, DOI 10.1090/S0273-0979-1990-15910-5 - Klaus Johannson,
*Topology and combinatorics of 3-manifolds*, Lecture Notes in Mathematics, vol. 1599, Springer-Verlag, Berlin, 1995. MR**1439249**, DOI 10.1007/BFb0074005 - Tsuyoshi Kobayashi,
*A construction of $3$-manifolds whose homeomorphism classes of Heegaard splittings have polynomial growth*, Osaka J. Math.**29**(1992), no. 4, 653–674. MR**1192734** - Marc Lackenby,
*The asymptotic behaviour of Heegaard genus*, Math. Res. Lett.**11**(2004), no. 2-3, 139–149. MR**2067463**, DOI 10.4310/MRL.2004.v11.n2.a1 - Tao Li,
*Laminar branched surfaces in 3-manifolds*, Geom. Topol.**6**(2002), 153–194. MR**1914567**, DOI 10.2140/gt.2002.6.153 - Tao Li,
*Boundary curves of surfaces with the 4-plane property*, Geom. Topol.**6**(2002), 609–647. MR**1941725**, DOI 10.2140/gt.2002.6.609
L2 Tao Li, - J. Masters, W. Menasco, and X. Zhang,
*Heegaard splittings and virtually Haken Dehn filling*, New York J. Math.**10**(2004), 133–150. MR**2052369** - W. Menasco,
*Closed incompressible surfaces in alternating knot and link complements*, Topology**23**(1984), no. 1, 37–44. MR**721450**, DOI 10.1016/0040-9383(84)90023-5 - John W. Morgan and Peter B. Shalen,
*Degenerations of hyperbolic structures. II. Measured laminations in $3$-manifolds*, Ann. of Math. (2)**127**(1988), no. 2, 403–456. MR**932305**, DOI 10.2307/2007061 - Yoav Moriah,
*Heegaard splittings of Seifert fibered spaces*, Invent. Math.**91**(1988), no. 3, 465–481. MR**928492**, DOI 10.1007/BF01388781 - Yoav Moriah and Jennifer Schultens,
*Irreducible Heegaard splittings of Seifert fibered spaces are either vertical or horizontal*, Topology**37**(1998), no. 5, 1089–1112. MR**1650355**, DOI 10.1016/S0040-9383(97)00072-4
MSS Yoav Moriah, Saul Schleimer, and Eric Sedgwick, - Ulrich Oertel,
*Measured laminations in $3$-manifolds*, Trans. Amer. Math. Soc.**305**(1988), no. 2, 531–573. MR**924769**, DOI 10.1090/S0002-9947-1988-0924769-1
P Parris, - J. H. Rubinstein,
*Polyhedral minimal surfaces, Heegaard splittings and decision problems for $3$-dimensional manifolds*, Geometric topology (Athens, GA, 1993) AMS/IP Stud. Adv. Math., vol. 2, Amer. Math. Soc., Providence, RI, 1997, pp. 1–20. MR**1470718**, DOI 10.1090/amsip/002.1/01 - Hyam Rubinstein and Martin Scharlemann,
*Comparing Heegaard splittings of non-Haken $3$-manifolds*, Topology**35**(1996), no. 4, 1005–1026. MR**1404921**, DOI 10.1016/0040-9383(95)00055-0 - Martin Scharlemann,
*Local detection of strongly irreducible Heegaard splittings*, Topology Appl.**90**(1998), no. 1-3, 135–147. MR**1648310**, DOI 10.1016/S0166-8641(97)00184-3 - E. Sedgwick,
*An infinite collection of Heegaard splittings that are equivalent after one stabilization*, Math. Ann.**308**(1997), no. 1, 65–72. MR**1446199**, DOI 10.1007/s002080050064 - Michelle Stocking,
*Almost normal surfaces in $3$-manifolds*, Trans. Amer. Math. Soc.**352**(2000), no. 1, 171–207. MR**1491877**, DOI 10.1090/S0002-9947-99-02296-5 - Friedhelm Waldhausen,
*Heegaard-Zerlegungen der $3$-Sphäre*, Topology**7**(1968), 195–203 (German). MR**227992**, DOI 10.1016/0040-9383(68)90027-X - Friedhelm Waldhausen,
*Some problems on $3$-manifolds*, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 313–322. MR**520549** - Ying-Qing Wu,
*Dehn surgery on arborescent knots*, J. Differential Geom.**43**(1996), no. 1, 171–197. MR**1424423**

*An algorithm to find vertical tori in small Seifert fiber spaces*. Preprint. arXiv: math.GT/0209107. L4 Tao Li,

*Heegaard surfaces and measured laminations, I: The Waldhausen conjecture*. Preprint. arXiv:math.GT; also available at: www2.bc.edu/˜taoli/publications.html.

*Heegaard splittings of the form H + nK*, to appear in Communications in Analysis and Geometry, arXiv:math.GT/0408002.

*Pretzel Knots*. Ph.D. Thesis, Princeton University (1978).

## Bibliographic Information

**Tao Li**- Affiliation: Department of Mathematics, Boston College, Chestnut Hill, Massachusetts, 02167-3806
- Email: taoli@bc.edu
- Received by editor(s): November 24, 2004
- Published electronically: February 3, 2006
- Additional Notes: Partially supported by NSF grants DMS-0102316 and DMS-0406038
- © Copyright 2006
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc.
**19**(2006), 625-657 - MSC (2000): Primary 57N10, 57M50; Secondary 57M25
- DOI: https://doi.org/10.1090/S0894-0347-06-00520-0
- MathSciNet review: 2220101