Quantized symplectic actions and $W$-algebras
HTML articles powered by AMS MathViewer
- by Ivan Losev;
- J. Amer. Math. Soc. 23 (2010), 35-59
- DOI: https://doi.org/10.1090/S0894-0347-09-00648-1
- Published electronically: September 18, 2009
- PDF | Request permission
Abstract:
With a nilpotent element in a semisimple Lie algebra $\mathfrak {g}$ one associates a finitely generated associative algebra $\mathcal {W}$ called a $W$-algebra of finite type. This algebra is obtained from the universal enveloping algebra $U(\mathfrak {g})$ by a certain Hamiltonian reduction. We observe that $\mathcal {W}$ is the invariant algebra for an action of a reductive group $G$ with Lie algebra $\mathfrak {g}$ on a quantized symplectic affine variety and use this observation to study $\mathcal {W}$. Our results include an alternative definition of $\mathcal {W}$, a relation between the sets of prime ideals of $\mathcal {W}$ and of the corresponding universal enveloping algebra, the existence of a one-dimensional representation of $\mathcal {W}$ in the case of classical $\mathfrak {g}$ and the separation of elements of $\mathcal {W}$ by finite-dimensional representations.References
- R. Bezrukavnikov and D. Kaledin, Fedosov quantization in algebraic context, Mosc. Math. J. 4 (2004), no. 3, 559–592, 782 (English, with English and Russian summaries). MR 2119140, DOI 10.17323/1609-4514-2004-4-3-559-592
- F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, and D. Sternheimer, Deformation theory and quantization. I. Deformations of symplectic structures, Ann. Physics 111 (1978), no. 1, 61–110. MR 496157, DOI 10.1016/0003-4916(78)90224-5
- Walter Borho and Hanspeter Kraft, Über die Gelfand-Kirillov-Dimension, Math. Ann. 220 (1976), no. 1, 1–24. MR 412240, DOI 10.1007/BF01354525
- Jonathan Brundan and Simon M. Goodwin, Good grading polytopes, Proc. Lond. Math. Soc. (3) 94 (2007), no. 1, 155–180. MR 2293468, DOI 10.1112/plms/pdl009
- Jonathan Brundan and Alexander Kleshchev, Shifted Yangians and finite $W$-algebras, Adv. Math. 200 (2006), no. 1, 136–195. MR 2199632, DOI 10.1016/j.aim.2004.11.004
- Jonathan Brundan and Alexander Kleshchev, Representations of shifted Yangians and finite $W$-algebras, Mem. Amer. Math. Soc. 196 (2008), no. 918, viii+107. MR 2456464, DOI 10.1090/memo/0918
- Neil Chriss and Victor Ginzburg, Representation theory and complex geometry, Birkhäuser Boston, Inc., Boston, MA, 1997. MR 1433132
- Alberto De Sole and Victor G. Kac, Finite vs affine $W$-algebras, Jpn. J. Math. 1 (2006), no. 1, 137–261. MR 2261064, DOI 10.1007/s11537-006-0505-2
- Daniel R. Farkas, A ring-theorist’s description of Fedosov quantization, Lett. Math. Phys. 51 (2000), no. 3, 161–177. MR 1775419, DOI 10.1023/A:1007668718004
- Boris V. Fedosov, A simple geometrical construction of deformation quantization, J. Differential Geom. 40 (1994), no. 2, 213–238. MR 1293654
- Boris Fedosov, Deformation quantization and index theory, Mathematical Topics, vol. 9, Akademie Verlag, Berlin, 1996. MR 1376365
- Wee Liang Gan and Victor Ginzburg, Quantization of Slodowy slices, Int. Math. Res. Not. 5 (2002), 243–255. MR 1876934, DOI 10.1155/S107379280210609X
- Victor Ginzburg, On primitive ideals, Selecta Math. (N.S.) 9 (2003), no. 3, 379–407. MR 2006573, DOI 10.1007/s00029-003-0338-2
- Victor Ginzburg, Harish-Chandra bimodules for quantized Slodowy slices, Represent. Theory 13 (2009), 236–271. MR 2515934, DOI 10.1090/S1088-4165-09-00355-0
- Simone Gutt and John Rawnsley, Equivalence of star products on a symplectic manifold; an introduction to Deligne’s Čech cohomology classes, J. Geom. Phys. 29 (1999), no. 4, 347–392. MR 1675581, DOI 10.1016/S0393-0440(98)00045-X
- Jens Carsten Jantzen, Einhüllende Algebren halbeinfacher Lie-Algebren, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 3, Springer-Verlag, Berlin, 1983 (German). MR 721170, DOI 10.1007/978-3-642-68955-0
- Jens Carsten Jantzen, Nilpotent orbits in representation theory, Lie theory, Progr. Math., vol. 228, Birkhäuser Boston, Boston, MA, 2004, pp. 1–211. MR 2042689
- Victor Kac, Vertex algebras for beginners, 2nd ed., University Lecture Series, vol. 10, American Mathematical Society, Providence, RI, 1998. MR 1651389, DOI 10.1090/ulect/010
- F. Knop. Weyl groups of Hamiltonian manifolds, I. Preprint, arXiv:dg-ga/9712010.
- Bertram Kostant, On Whittaker vectors and representation theory, Invent. Math. 48 (1978), no. 2, 101–184. MR 507800, DOI 10.1007/BF01390249
- Hanspeter Kraft and Claudio Procesi, Closures of conjugacy classes of matrices are normal, Invent. Math. 53 (1979), no. 3, 227–247. MR 549399, DOI 10.1007/BF01389764
- Hanspeter Kraft and Claudio Procesi, On the geometry of conjugacy classes in classical groups, Comment. Math. Helv. 57 (1982), no. 4, 539–602. MR 694606, DOI 10.1007/BF02565876
- I. V. Losev, Symplectic slices for actions of reductive groups, Mat. Sb. 197 (2006), no. 2, 75–86 (Russian, with Russian summary); English transl., Sb. Math. 197 (2006), no. 1-2, 213–224. MR 2230091, DOI 10.1070/SM2006v197n02ABEH003754
- I. Losev. Finite dimensional representations of W-algebras, Preprint, arXiv:0807.1023v2.
- T.E. Lynch. Generalized Whittaker vectors and representation theory. Thesis, M.I.T., 1979.
- William M. McGovern, Completely prime maximal ideals and quantization, Mem. Amer. Math. Soc. 108 (1994), no. 519, viii+67. MR 1191608, DOI 10.1090/memo/0519
- C. Mœglin, Modèle de Whittaker et idéaux primitifs complètement premiers dans les algèbres enveloppantes des algèbres de Lie semisimples complexes. II, Math. Scand. 63 (1988), no. 1, 5–35 (French). MR 994967, DOI 10.7146/math.scand.a-12222
- J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, Pure and Applied Mathematics (New York), John Wiley & Sons, Ltd., Chichester, 1987. With the cooperation of L. W. Small; A Wiley-Interscience Publication. MR 934572
- Alexander Premet, Special transverse slices and their enveloping algebras, Adv. Math. 170 (2002), no. 1, 1–55. With an appendix by Serge Skryabin. MR 1929302, DOI 10.1006/aima.2001.2063
- Alexander Premet, Enveloping algebras of Slodowy slices and the Joseph ideal, J. Eur. Math. Soc. (JEMS) 9 (2007), no. 3, 487–543. MR 2314105, DOI 10.4171/JEMS/86
- Alexander Premet, Primitive ideals, non-restricted representations and finite $W$-algebras, Mosc. Math. J. 7 (2007), no. 4, 743–762, 768 (English, with English and Russian summaries). MR 2372212, DOI 10.17323/1609-4514-2007-7-4-743-762
- È. B. Vinberg and V. L. Popov, Invariant theory, Algebraic geometry, 4 (Russian), Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1989, pp. 137–314, 315 (Russian). MR 1100485
- Peter Slodowy, Simple singularities and simple algebraic groups, Lecture Notes in Mathematics, vol. 815, Springer, Berlin, 1980. MR 584445, DOI 10.1007/BFb0090294
- R. B. Warfield Jr., Prime ideals in ring extensions, J. London Math. Soc. (2) 28 (1983), no. 3, 453–460. MR 724714, DOI 10.1112/jlms/s2-28.3.453
- Ping Xu, Fedosov $*$-products and quantum momentum maps, Comm. Math. Phys. 197 (1998), no. 1, 167–197. MR 1646487, DOI 10.1007/s002200050446
Bibliographic Information
- Ivan Losev
- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
- MR Author ID: 775766
- Email: ivanlosev@math.mit.edu
- Received by editor(s): August 17, 2007
- Published electronically: September 18, 2009
- © Copyright 2009 American Mathematical Society
- Journal: J. Amer. Math. Soc. 23 (2010), 35-59
- MSC (2000): Primary 17B35, 53D55
- DOI: https://doi.org/10.1090/S0894-0347-09-00648-1
- MathSciNet review: 2552248