Curve counting theories via stable objects I. DT/PT correspondence
Author:
Yukinobu Toda
Journal:
J. Amer. Math. Soc. 23 (2010), 1119-1157
MSC (2010):
Primary 14D20; Secondary 18E30
DOI:
https://doi.org/10.1090/S0894-0347-10-00670-3
Published electronically:
April 16, 2010
MathSciNet review:
2669709
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The Donaldson-Thomas invariant is a curve counting invariant on Calabi-Yau 3-folds via ideal sheaves. Another counting invariant via stable pairs is introduced by Pandharipande and Thomas, which counts pairs of curves and divisors on them. These two theories are conjecturally equivalent via generating functions, called DT/PT correspondence. In this paper, we show the Euler characteristic version of DT/PT correspondence, using the notion of weak stability conditions and the wall-crossing formula.
- 1.
A. Bayer.
Polynomial Bridgeland stability conditions and the large volume limit.
math.AG/ 0712.1083. - 2.
K. Behrend.
Donaldson-Thomas invariants via microlocal geometry.
Ann. of Math (to appear).
math.AG/0507523. - 3. Kai Behrend and Barbara Fantechi, Symmetric obstruction theories and Hilbert schemes of points on threefolds, Algebra Number Theory 2 (2008), no. 3, 313–345. MR 2407118, https://doi.org/10.2140/ant.2008.2.313
- 4.
K. Behrend and E. Getzler.
Chern-Simons functional.
In preparation. - 5.
R. Bezrukavnikov.
Perverse coherent sheaves (after Deligne).
math.AG/0005152. - 6.
T. Bridgeland.
Hall algebras and curve-counting invariants.
Preprint.
http://www. tombridgeland.staff.shef.ac.uk/papers/dtpt.pdf. - 7. Tom Bridgeland, Stability conditions on triangulated categories, Ann. of Math. (2) 166 (2007), no. 2, 317–345. MR 2373143, https://doi.org/10.4007/annals.2007.166.317
- 8. Tom Bridgeland, Stability conditions on 𝐾3 surfaces, Duke Math. J. 141 (2008), no. 2, 241–291. MR 2376815, https://doi.org/10.1215/S0012-7094-08-14122-5
- 9. Jan Cheah, On the cohomology of Hilbert schemes of points, J. Algebraic Geom. 5 (1996), no. 3, 479–511. MR 1382733
- 10. Michel Van den Bergh, Three-dimensional flops and noncommutative rings, Duke Math. J. 122 (2004), no. 3, 423–455. MR 2057015, https://doi.org/10.1215/S0012-7094-04-12231-6
- 11. Dieter Happel, Idun Reiten, and Sverre O. Smalø, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 120 (1996), no. 575, viii+ 88. MR 1327209, https://doi.org/10.1090/memo/0575
- 12. Dominic Joyce, Configurations in abelian categories. I. Basic properties and moduli stacks, Adv. Math. 203 (2006), no. 1, 194–255. MR 2231046, https://doi.org/10.1016/j.aim.2005.04.008
- 13. Dominic Joyce, Configurations in abelian categories. II. Ringel-Hall algebras, Adv. Math. 210 (2007), no. 2, 635–706. MR 2303235, https://doi.org/10.1016/j.aim.2006.07.006
- 14. Dominic Joyce, Configurations in abelian categories. III. Stability conditions and identities, Adv. Math. 215 (2007), no. 1, 153–219. MR 2354988, https://doi.org/10.1016/j.aim.2007.04.002
- 15. Dominic Joyce, Motivic invariants of Artin stacks and ‘stack functions’, Q. J. Math. 58 (2007), no. 3, 345–392. MR 2354923, https://doi.org/10.1093/qmath/ham019
- 16. Dominic Joyce, Configurations in abelian categories. III. Stability conditions and identities, Adv. Math. 215 (2007), no. 1, 153–219. MR 2354988, https://doi.org/10.1016/j.aim.2007.04.002
- 17.
D. Joyce and Y. Song.
A theory of generalized Donaldson-Thomas invariants.
math.AG/ 0810.5645. - 18. Masaki Kashiwara, 𝑡-structures on the derived categories of holonomic 𝒟-modules and coherent 𝒪-modules, Mosc. Math. J. 4 (2004), no. 4, 847–868, 981 (English, with English and Russian summaries). MR 2124169, https://doi.org/10.17323/1609-4514-2004-4-4-847-868
- 19.
M. Kontsevich and Y. Soibelman.
Stability structures, motivic Donaldson-Thomas invariants and cluster transformations.
math.AG/0811.2435. - 20. M. Levine and R. Pandharipande, Algebraic cobordism revisited, Invent. Math. 176 (2009), no. 1, 63–130. MR 2485880, https://doi.org/10.1007/s00222-008-0160-8
- 21. Jun Li, Zero dimensional Donaldson-Thomas invariants of threefolds, Geom. Topol. 10 (2006), 2117–2171. MR 2284053, https://doi.org/10.2140/gt.2006.10.2117
- 22. Wei-Ping Li and Zhenbo Qin, On the Euler numbers of certain moduli spaces of curves and points, Comm. Anal. Geom. 14 (2006), no. 2, 387–410. MR 2255015
- 23. Max Lieblich, Moduli of complexes on a proper morphism, J. Algebraic Geom. 15 (2006), no. 1, 175–206. MR 2177199, https://doi.org/10.1090/S1056-3911-05-00418-2
- 24. D. Maulik, N. Nekrasov, A. Okounkov, and R. Pandharipande, Gromov-Witten theory and Donaldson-Thomas theory. I, Compos. Math. 142 (2006), no. 5, 1263–1285. MR 2264664, https://doi.org/10.1112/S0010437X06002302
- 25. R. Pandharipande and R. P. Thomas, Curve counting via stable pairs in the derived category, Invent. Math. 178 (2009), no. 2, 407–447. MR 2545686, https://doi.org/10.1007/s00222-009-0203-9
- 26.
J. Stoppa and R. P. Thomas.
Hilbert schemes and stable pairs: GIT and derived category wall crossings.
math.AG/0903.1444. - 27. R. P. Thomas, A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on 𝐾3 fibrations, J. Differential Geom. 54 (2000), no. 2, 367–438. MR 1818182
- 28.
Y. Toda.
Curve counting theories via stable objects II. DT/ncDT/flop formula.
In preparation. - 29.
Y. Toda.
Generating functions of stable pair invariants via wall-crossings in derived categories.
math.AG/0806.0062. - 30. Yukinobu Toda, Limit stable objects on Calabi-Yau 3-folds, Duke Math. J. 149 (2009), no. 1, 157–208. MR 2541209, https://doi.org/10.1215/00127094-2009-038
- 31. Yukinobu Toda, Moduli stacks and invariants of semistable objects on 𝐾3 surfaces, Adv. Math. 217 (2008), no. 6, 2736–2781. MR 2397465, https://doi.org/10.1016/j.aim.2007.11.010
Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 14D20, 18E30
Retrieve articles in all journals with MSC (2010): 14D20, 18E30
Additional Information
Yukinobu Toda
Affiliation:
Institute for the Physics and Mathematics of the Universe (IPMU), University of Tokyo, Kashiwano-ha 5-1-5, Kashiwa City, Chiba 277-8582, Japan
Email:
toda-914@pj9.so-net.ne.jp
DOI:
https://doi.org/10.1090/S0894-0347-10-00670-3
Received by editor(s):
March 10, 2009
Received by editor(s) in revised form:
March 8, 2010
Published electronically:
April 16, 2010
Additional Notes:
This work is supported by the World Premier International Research Center Initiative (WPI initiative), MEXT, Japan. This work is partially supported by EPSRC grant EP/F038461/1.
Article copyright:
© Copyright 2010
American Mathematical Society