## Stationary measures and equidistribution for orbits of nonabelian semigroups on the torus

HTML articles powered by AMS MathViewer

- by Jean Bourgain, Alex Furman, Elon Lindenstrauss and Shahar Mozes PDF
- J. Amer. Math. Soc.
**24**(2011), 231-280 Request permission

## Abstract:

Let $\nu$ be a probability measure on $\mathrm {SL}_d(\mathbb {Z})$ satisfying the moment condition $\mathbb {E}_\nu (\|g\|^\epsilon )<\infty$ for some $\epsilon$. We show that if the group generated by the support of $\nu$ is large enough, in particular if this group is Zariski dense in $\mathrm {SL}_d$, for any irrational $x \in \mathbb {T}^d$ the probability measures $\nu ^{* n} * \delta _x$ tend to the uniform measure on $\mathbb {T}^d$. If in addition $x$ is Diophantine generic, we show this convergence is exponentially fast.## References

- Daniel Berend,
*Multi-invariant sets on compact abelian groups*, Trans. Amer. Math. Soc.**286**(1984), no. 2, 505–535. MR**760973**, DOI 10.1090/S0002-9947-1984-0760973-X - Yves Benoist and Jean-François Quint,
*Mesures stationnaires et fermés invariants des espaces homogènes*, C. R. Math. Acad. Sci. Paris**347**(2009), no. 1-2, 9–13 (French, with English and French summaries). MR**2536741**, DOI 10.1016/j.crma.2008.11.001 - Philippe Bougerol and Jean Lacroix,
*Products of random matrices with applications to Schrödinger operators*, Progress in Probability and Statistics, vol. 8, Birkhäuser Boston, Inc., Boston, MA, 1985. MR**886674**, DOI 10.1007/978-1-4684-9172-2 - J. Bourgain,
*On the Erdős-Volkmann and Katz-Tao ring conjectures*, Geom. Funct. Anal.**13**(2003), no. 2, 334–365. MR**1982147**, DOI 10.1007/s000390300008 - J. Bourgain,
*The discretized sum product and projection theorems*(2009). - Jean Bourgain, Alex Furman, Elon Lindenstrauss, and Shahar Mozes,
*Invariant measures and stiffness for non-abelian groups of toral automorphisms*, C. R. Math. Acad. Sci. Paris**344**(2007), no. 12, 737–742 (English, with English and French summaries). MR**2340439**, DOI 10.1016/j.crma.2007.04.017 - Jean Bourgain and Alex Gamburd,
*On the spectral gap for finitely-generated subgroups of $\rm SU(2)$*, Invent. Math.**171**(2008), no. 1, 83–121. MR**2358056**, DOI 10.1007/s00222-007-0072-z - Jean Bourgain, Alex Gamburd, and Peter Sarnak,
*Sieving and expanders*, C. R. Math. Acad. Sci. Paris**343**(2006), no. 3, 155–159 (English, with English and French summaries). MR**2246331**, DOI 10.1016/j.crma.2006.05.023 - M. Burger,
*Kazhdan constants for $\textrm {SL}(3,\textbf {Z})$*, J. Reine Angew. Math.**413**(1991), 36–67. MR**1089795**, DOI 10.1515/crll.1991.413.36 - Manfred Einsiedler and Elon Lindenstrauss,
*Rigidity properties of $\Bbb Z^d$-actions on tori and solenoids*, Electron. Res. Announc. Amer. Math. Soc.**9**(2003), 99–110. MR**2029471**, DOI 10.1090/S1079-6762-03-00117-3 - Harry Furstenberg,
*Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation*, Math. Systems Theory**1**(1967), 1–49. MR**213508**, DOI 10.1007/BF01692494 - Hillel Furstenberg,
*Stiffness of group actions*, Lie groups and ergodic theory (Mumbai, 1996) Tata Inst. Fund. Res. Stud. Math., vol. 14, Tata Inst. Fund. Res., Bombay, 1998, pp. 105–117. MR**1699360** - K. J. Falconer,
*Hausdorff dimension and the exceptional set of projections*, Mathematika**29**(1982), no. 1, 109–115. MR**673510**, DOI 10.1112/S0025579300012201 - Harry Furstenberg,
*Noncommuting random products*, Trans. Amer. Math. Soc.**108**(1963), 377–428. MR**163345**, DOI 10.1090/S0002-9947-1963-0163345-0 - H. Furstenberg and Y. Kifer,
*Random matrix products and measures on projective spaces*, Israel J. Math.**46**(1983), no. 1-2, 12–32. MR**727020**, DOI 10.1007/BF02760620 - I. Ya. Gol′dsheĭd and G. A. Margulis,
*Lyapunov exponents of a product of random matrices*, Uspekhi Mat. Nauk**44**(1989), no. 5(269), 13–60 (Russian); English transl., Russian Math. Surveys**44**(1989), no. 5, 11–71. MR**1040268**, DOI 10.1070/RM1989v044n05ABEH002214 - Y. Guivarc’h and A. Raugi,
*Products of random matrices: convergence theorems*, Random matrices and their applications (Brunswick, Maine, 1984) Contemp. Math., vol. 50, Amer. Math. Soc., Providence, RI, 1986, pp. 31–54. MR**841080**, DOI 10.1090/conm/050/841080 - Yves Guivarc’h and Albert Raugi,
*Propriétés de contraction d’un semi-groupe de matrices inversibles. Coefficients de Liapunoff d’un produit de matrices aléatoires indépendantes*, Israel J. Math.**65**(1989), no. 2, 165–196 (French, with English summary). MR**998669**, DOI 10.1007/BF02764859 - Y. Guivarc’h and A. N. Starkov,
*Orbits of linear group actions, random walks on homogeneous spaces and toral automorphisms*, Ergodic Theory Dynam. Systems**24**(2004), no. 3, 767–802. MR**2060998**, DOI 10.1017/S0143385703000440 - Boris Kalinin and Anatole Katok,
*Invariant measures for actions of higher rank abelian groups*, Smooth ergodic theory and its applications (Seattle, WA, 1999) Proc. Sympos. Pure Math., vol. 69, Amer. Math. Soc., Providence, RI, 2001, pp. 593–637. MR**1858547**, DOI 10.1090/pspum/069/1858547 - A. Katok and R. J. Spatzier,
*Invariant measures for higher-rank hyperbolic abelian actions*, Ergodic Theory Dynam. Systems**16**(1996), no. 4, 751–778. MR**1406432**, DOI 10.1017/S0143385700009081 - Nets Hawk Katz and Terence Tao,
*Some connections between Falconer’s distance set conjecture and sets of Furstenburg type*, New York J. Math.**7**(2001), 149–187. MR**1856956** - Yitzhak Katznelson,
*An introduction to harmonic analysis*, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR**0248482** - Émile Le Page,
*Théorèmes limites pour les produits de matrices aléatoires*, Probability measures on groups (Oberwolfach, 1981) Lecture Notes in Math., vol. 928, Springer, Berlin-New York, 1982, pp. 258–303 (French). MR**669072** - Gregory Margulis,
*Problems and conjectures in rigidity theory*, Mathematics: frontiers and perspectives, Amer. Math. Soc., Providence, RI, 2000, pp. 161–174. MR**1754775** - Pertti Mattila,
*Geometry of sets and measures in Euclidean spaces*, Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge University Press, Cambridge, 1995. Fractals and rectifiability. MR**1333890**, DOI 10.1017/CBO9780511623813 - Roman Muchnik,
*Semigroup actions on $\Bbb T^n$*, Geom. Dedicata**110**(2005), 1–47. MR**2136018**, DOI 10.1007/s10711-004-4321-7 - Yuval Peres and Wilhelm Schlag,
*Smoothness of projections, Bernoulli convolutions, and the dimension of exceptions*, Duke Math. J.**102**(2000), no. 2, 193–251. MR**1749437**, DOI 10.1215/S0012-7094-00-10222-0 - Marina Ratner,
*Interactions between ergodic theory, Lie groups, and number theory*, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 157–182. MR**1403920** - Daniel J. Rudolph,
*$\times 2$ and $\times 3$ invariant measures and entropy*, Ergodic Theory Dynam. Systems**10**(1990), no. 2, 395–406. MR**1062766**, DOI 10.1017/S0143385700005629

## Additional Information

**Jean Bourgain**- Affiliation: School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540
- MR Author ID: 40280
**Alex Furman**- Affiliation: Department of Mathematics, University of Illinois at Chicago, 51 S Morgan Street, MSCS (m/c 249), Illinois 60607
**Elon Lindenstrauss**- Affiliation: Department of Mathematics, Princeton University, Princeton, New Jersey 08544,
*and*Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel - MR Author ID: 605709
**Shahar Mozes**- Affiliation: Department of Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel
- MR Author ID: 264125
- Received by editor(s): November 18, 2009
- Received by editor(s) in revised form: March 18, 2010
- Published electronically: June 29, 2010
- Additional Notes: The first author was supported in part by NSF grants DMS-0808042 and DMS-0835373

The second author was supported in part by NSF grants DMS-0604611 and DMS-0905977.

The third author was supported in part by NSF grants DMS-0554345 and DMS-0800345.

The fourth author was supported in part by BSF and ISF - © Copyright 2010
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc.
**24**(2011), 231-280 - MSC (2010): Primary 11B75, 37A17; Secondary 37A45, 11L07, 20G30
- DOI: https://doi.org/10.1090/S0894-0347-2010-00674-1
- MathSciNet review: 2726604