Uniqueness of self-similar shrinkers with asymptotically conical ends
HTML articles powered by AMS MathViewer
- by Lu Wang;
- J. Amer. Math. Soc. 27 (2014), 613-638
- DOI: https://doi.org/10.1090/S0894-0347-2014-00792-X
- Published electronically: March 19, 2014
- PDF | Request permission
Abstract:
Let $C\subset \mathbb {R}^{n+1}$ be a regular cone with vertex at the origin. In this paper, we show the uniqueness for smooth properly embedded self-shrinking ends in $\mathbb {R}^{n+1}$ that are asymptotic to $C$. As an application, we prove that not every regular cone with vertex at the origin has a smooth complete properly embedded self-shrinker asymptotic to it.References
- U. Abresch and J. Langer, The normalized curve shortening flow and homothetic solutions, J. Differential Geom. 23 (1986), no. 2, 175–196. MR 845704
- Sigurd B. Angenent, Shrinking doughnuts, Nonlinear diffusion equations and their equilibrium states, 3 (Gregynog, 1989) Progr. Nonlinear Differential Equations Appl., vol. 7, Birkhäuser Boston, Boston, MA, 1992, pp. 21–38. MR 1167827
- Xu Cheng and Detang Zhou, Volume estimate about shrinkers, Proc. Amer. Math. Soc. 141 (2013), no. 2, 687–696. MR 2996973, DOI 10.1090/S0002-9939-2012-11922-7
- David L. Chopp, Computation of self-similar solutions for mean curvature flow, Experiment. Math. 3 (1994), no. 1, 1–15. MR 1302814
- Tobias H. Colding and William P. Minicozzi II, Generic mean curvature flow I: generic singularities, Ann. of Math. (2) 175 (2012), no. 2, 755–833. MR 2993752, DOI 10.4007/annals.2012.175.2.7
- Tobias H. Colding and William P. Minicozzi II, Smooth compactness of self-shrinkers, Comment. Math. Helv. 87 (2012), no. 2, 463–475. MR 2914856, DOI 10.4171/CMH/260
- Tobias H. Colding and William P. Minicozzi II, Minimal surfaces, Courant Lecture Notes in Mathematics, vol. 4, New York University, Courant Institute of Mathematical Sciences, New York, 1999. MR 1683966
- Celso J. Costa, Example of a complete minimal immersion in $\textbf {R}^3$ of genus one and three embedded ends, Bol. Soc. Brasil. Mat. 15 (1984), no. 1-2, 47–54. MR 794728, DOI 10.1007/BF02584707
- Q. Ding and Y.L. Xin, Volume growth, eigenvalue and compactness for self-shrinkers, Asian J. Math. 17 (2013), no. 3, 443–456.
- Klaus Ecker, Regularity theory for mean curvature flow, Progress in Nonlinear Differential Equations and their Applications, vol. 57, Birkhäuser Boston, Inc., Boston, MA, 2004. MR 2024995, DOI 10.1007/978-0-8176-8210-1
- Klaus Ecker and Gerhard Huisken, Mean curvature evolution of entire graphs, Ann. of Math. (2) 130 (1989), no. 3, 453–471. MR 1025164, DOI 10.2307/1971452
- Klaus Ecker and Gerhard Huisken, Interior estimates for hypersurfaces moving by mean curvature, Invent. Math. 105 (1991), no. 3, 547–569. MR 1117150, DOI 10.1007/BF01232278
- Luis Escauriaza and Francisco Javier Fernández, Unique continuation for parabolic operators, Ark. Mat. 41 (2003), no. 1, 35–60. MR 1971939, DOI 10.1007/BF02384566
- L. Escauriaza, C. E. Kenig, G. Ponce, and L. Vega, Decay at infinity of caloric functions within characteristic hyperplanes, Math. Res. Lett. 13 (2006), no. 2-3, 441–453. MR 2231129, DOI 10.4310/MRL.2006.v13.n3.a8
- L. Escauriaza, G. Seregin, and V. Šverák, Backward uniqueness for parabolic equations, Arch. Ration. Mech. Anal. 169 (2003), no. 2, 147–157. MR 2005639, DOI 10.1007/s00205-003-0263-8
- L. Escauriaza, G. Seregin, and V. Šverák, On backward uniqueness for parabolic equations, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 288 (2002), no. Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 32, 100–103, 272 (English, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 123 (2004), no. 6, 4577–4579. MR 1923546, DOI 10.1023/B:JOTH.0000041475.11233.d8
- Nicola Garofalo and Fang-Hua Lin, Unique continuation for elliptic operators: a geometric-variational approach, Comm. Pure Appl. Math. 40 (1987), no. 3, 347–366. MR 882069, DOI 10.1002/cpa.3160400305
- Nicola Garofalo and Fang-Hua Lin, Monotonicity properties of variational integrals, $A_p$ weights and unique continuation, Indiana Univ. Math. J. 35 (1986), no. 2, 245–268. MR 833393, DOI 10.1512/iumj.1986.35.35015
- David Hoffman and William H. Meeks III, Embedded minimal surfaces of finite topology, Ann. of Math. (2) 131 (1990), no. 1, 1–34. MR 1038356, DOI 10.2307/1971506
- Gerhard Huisken, Local and global behaviour of hypersurfaces moving by mean curvature, Differential geometry: partial differential equations on manifolds (Los Angeles, CA, 1990) Proc. Sympos. Pure Math., vol. 54, Amer. Math. Soc., Providence, RI, 1993, pp. 175–191. MR 1216584, DOI 10.1090/pspum/054.1/1216584
- Gerhard Huisken, Asymptotic behavior for singularities of the mean curvature flow, J. Differential Geom. 31 (1990), no. 1, 285–299. MR 1030675
- T. Ilmanen, Personal communication.
- T. Ilmanen, Lectures on mean curvature flow and related equations (1995). unpublished notes.
- T. Ilmanen, Singularities of mean curvature flow of surfaces (1995). preprint.
- David Jerison, Carleman inequalities for the Dirac and Laplace operators and unique continuation, Adv. in Math. 62 (1986), no. 2, 118–134. MR 865834, DOI 10.1016/0001-8708(86)90096-4
- David Jerison and Carlos E. Kenig, Unique continuation and absence of positive eigenvalues for Schrödinger operators, Ann. of Math. (2) 121 (1985), no. 3, 463–494. With an appendix by E. M. Stein. MR 794370, DOI 10.2307/1971205
- Nikolaos Kapouleas, Complete embedded minimal surfaces of finite total curvature, J. Differential Geom. 47 (1997), no. 1, 95–169. MR 1601434
- Nikolaos Kapouleas, S.J. Kleene, and N.M. Møller, Mean curvature self-shrinkers of high genus: non-compact examples, J. Reine Angew. Math.,. to appear, arXiv: 1106.5454.
- S.J. Kleene and N.M. Møller, Self-shrinkers with a rotational symmetry, Trans. Amer. Math. Soc.,. to appear, arXiv: 1008.1609.
- B. Kotschwar, Personal communication.
- B. Kotschwar, Ricci flow and the holonomy group. J. Reine Angew. Math., to appear, arXiv: 1105.3722.
- Brett L. Kotschwar, Backwards uniqueness for the Ricci flow, Int. Math. Res. Not. IMRN 21 (2010), 4064–4097. MR 2738351, DOI 10.1093/imrn/rnq022
- Lu Li and Vladimír Šverák, Backward uniqueness for the heat equation in cones, Comm. Partial Differential Equations 37 (2012), no. 8, 1414–1429. MR 2957545, DOI 10.1080/03605302.2011.635323
- Fang-Hua Lin, A uniqueness theorem for parabolic equations, Comm. Pure Appl. Math. 43 (1990), no. 1, 127–136. MR 1024191, DOI 10.1002/cpa.3160430105
- S. Micu and E. Zuazua, On the lack of null-controllability of the heat equation on the half space, Port. Math. (N.S.) 58 (2001), no. 1, 1–24. MR 1820835
- N.M. Møller, Closed self-shrinking surfaces in $\mathbb {R}^3$ via the torus (2001). preprint.
- Tu A. Nguyen, On a question of Landis and Oleinik, Trans. Amer. Math. Soc. 362 (2010), no. 6, 2875–2899. MR 2592940, DOI 10.1090/S0002-9947-10-04733-1
- Xuan Hien Nguyen, Construction of complete embedded self-similar surfaces under mean curvature flow. III, Duke Math. J.,. to appear, arXiv: 1106.5272.
- Xuan Hien Nguyen, Construction of complete embedded self-similar surfaces under mean curvature flow. II, Adv. Differential Equations 15 (2010), no. 5-6, 503–530. MR 2643233
- Xuan Hien Nguyen, Construction of complete embedded self-similar surfaces under mean curvature flow. I, Trans. Amer. Math. Soc. 361 (2009), no. 4, 1683–1701. MR 2465812, DOI 10.1090/S0002-9947-08-04748-X
- Yifei Pan and Thomas Wolff, A remark on unique continuation, J. Geom. Anal. 8 (1998), no. 4, 599–604. MR 1724207, DOI 10.1007/BF02921714
- Chi-Cheung Poon, Unique continuation for parabolic equations, Comm. Partial Differential Equations 21 (1996), no. 3-4, 521–539. MR 1387458, DOI 10.1080/03605309608821195
- David L. Russell, A unified boundary controllability theory for hyperbolic and parabolic partial differential equations, Studies in Appl. Math. 52 (1973), 189–211. MR 341256, DOI 10.1002/sapm1973523189
- Gregory Seregin and Vladimir Šverák, The Navier-Stokes equations and backward uniqueness, Nonlinear problems in mathematical physics and related topics, II, Int. Math. Ser. (N. Y.), vol. 2, Kluwer/Plenum, New York, 2002, pp. 353–366. MR 1972005, DOI 10.1007/978-1-4615-0701-7_{1}9
- C. D. Sogge, A unique continuation theorem for second order parabolic differential operators, Ark. Mat. 28 (1990), no. 1, 159–182. MR 1049649, DOI 10.1007/BF02387373
- L. Wang, Uniqueness of self-similar shrinkers with asymptotically cylindrical ends, J. Reine Angew. Math. (2013). in press.
- Lu Wang, A Bernstein type theorem for self-similar shrinkers, Geom. Dedicata 151 (2011), 297–303. MR 2780753, DOI 10.1007/s10711-010-9535-2
- Brian White, Partial regularity of mean-convex hypersurfaces flowing by mean curvature, Internat. Math. Res. Notices 4 (1994), 186 ff., approx. 8 pp.}, issn=1073-7928, review= MR 1266114, doi=10.1155/S1073792894000206, DOI 10.1155/
Bibliographic Information
- Lu Wang
- Affiliation:
Department of Mathematics, Johns Hopkins University, 3400 N. Charles Street, Baltimore
, Maryland 21218
- Email: coral0426@gmail.com
- Received by editor(s): October 3, 2011
- Received by editor(s) in revised form: June 27, 2013, and October 19, 2013
- Published electronically: March 19, 2014
- © Copyright 2014 American Mathematical Society
- Journal: J. Amer. Math. Soc. 27 (2014), 613-638
- MSC (2010): Primary 53C44, 53C24, 35J15; Secondary 35B60
- DOI: https://doi.org/10.1090/S0894-0347-2014-00792-X
- MathSciNet review: 3194490