Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society, the Mathematics of Computation (MCOM) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.98.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Some relations and values for the generalized Riemann zeta functions.
HTML articles powered by AMS MathViewer

by Eldon R. Hansen and Merrell L. Patrick PDF
Math. Comp. 16 (1962), 265-274 Request permission
References
    E. T. Whittaker & G. N. Watson, A Course in Modern Analysis, fourth edition, Cambridge, 1952. J. P. Gram, β€œTafeln fΓΌr die Riemannsche Zetafunktion,” Kungl. Danske Vid. Selsk. Skr. (8), v. 10, 1925, p. 313-325.
  • C. B. Haselgrove and J. C. P. Miller, Tables of the Riemann zeta function, Royal Society Mathematical Tables, Vol. 6, Cambridge University Press, New York, 1960. MR 0117905
  • R. Hensman, Tables of the Generalized Riemann Zeta Function, Report No. T 2111, Telecommunications Research Establishment, Ministry of Supply, Great Malvern, Worcestershire, 1948. British Association for the Advancement of Science, Mathematical Tables, Vol. I, Circular and Hyperbolic Functions, third edition, Cambridge University Press, 1951. E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, second edition, Oxford University Press, 1948.
  • E. O. Powell, A table of the generalized Riemann zeta function in a particular case, Quart. J. Mech. Appl. Math. 5 (1952), 116–123. MR 46740, DOI 10.1093/qjmam/5.1.116
  • K. Mitchell, Tables of the function $\int ^z_0(-\textrm {log}|1-y|/y) dy$ with an account of some properties of this and related functions, Philos. Mag. (7) 40 (1949), 351–368. MR 30294, DOI 10.1080/14786444908561256
  • E. Lerch, β€œNote sur la fonction $R(w,x,s) = \sum \limits _0^\infty {\tfrac {{{e^{2k\pi ix}}}} {{{{(w + k)}^s}}}}$,” Acta. Math. (Stockholm), v. 11, 1887, p. 19-24.
  • H. Bremmer, Terrestrial Radio Waves. Theory of Propagation, Elsevier Publishing Co., Inc., New York-Amsterdam-London-Brussels, 1949. MR 0032462
  • Nelson Logan, General Research in Diffraction Theory, v. I., Lockheed Missiles and Space Division Report #288087, December 1959.
Similar Articles
  • Retrieve articles in Mathematics of Computation with MSC: 10.41
  • Retrieve articles in all journals with MSC: 10.41
Additional Information
  • © Copyright 1962 American Mathematical Society
  • Journal: Math. Comp. 16 (1962), 265-274
  • MSC: Primary 10.41
  • DOI: https://doi.org/10.1090/S0025-5718-1962-0147462-X
  • MathSciNet review: 0147462