Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Some relations and values for the generalized Riemann zeta functions.


Authors: Eldon R. Hansen and Merrell L. Patrick
Journal: Math. Comp. 16 (1962), 265-274
MSC: Primary 10.41
DOI: https://doi.org/10.1090/S0025-5718-1962-0147462-X
Corrigendum: Math. Comp. 17 (1963), 104-104.
Corrigendum: Math. Comp. 17 (1963), 104-104.
MathSciNet review: 0147462
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

    E. T. Whittaker & G. N. Watson, A Course in Modern Analysis, fourth edition, Cambridge, 1952. J. P. Gram, “Tafeln für die Riemannsche Zetafunktion,” Kungl. Danske Vid. Selsk. Skr. (8), v. 10, 1925, p. 313-325.
  • C. B. Haselgrove and J. C. P. Miller, Tables of the Riemann zeta function, Royal Society Mathematical Tables, Vol. 6, Cambridge University Press, New York, 1960. MR 0117905
  • R. Hensman, Tables of the Generalized Riemann Zeta Function, Report No. T 2111, Telecommunications Research Establishment, Ministry of Supply, Great Malvern, Worcestershire, 1948. British Association for the Advancement of Science, Mathematical Tables, Vol. I, Circular and Hyperbolic Functions, third edition, Cambridge University Press, 1951. E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, second edition, Oxford University Press, 1948.
  • E. O. Powell, A table of the generalized Riemann zeta function in a particular case, Quart. J. Mech. Appl. Math. 5 (1952), 116–123. MR 46740, DOI https://doi.org/10.1093/qjmam/5.1.116
  • K. Mitchell, Tables of the function $\int ^z_0(-{\rm log}|1-y|/y) dy$ with an account of some properties of this and related functions, Philos. Mag. (7) 40 (1949), 351–368. MR 30294
  • E. Lerch, “Note sur la fonction $R(w,x,s) = \sum \limits _0^\infty {\tfrac {{{e^{2k\pi ix}}}} {{{{(w + k)}^s}}}}$,” Acta. Math. (Stockholm), v. 11, 1887, p. 19-24.
  • H. Bremmer, Terrestrial Radio Waves. Theory of Propagation, Elsevier Publishing Company, Inc., New York, N. Y., Amsterdam, London, Brussels, 1949. MR 0032462
  • Nelson Logan, General Research in Diffraction Theory, v. I., Lockheed Missiles and Space Division Report #288087, December 1959.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 10.41

Retrieve articles in all journals with MSC: 10.41


Additional Information

Article copyright: © Copyright 1962 American Mathematical Society