The calculation of certain Dirichlet series
Authors:
Daniel Shanks and John W. Wrench
Journal:
Math. Comp. 17 (1963), 136-154
MSC:
Primary 10.41; Secondary 10.03
DOI:
https://doi.org/10.1090/S0025-5718-1963-0159796-4
Corrigendum:
Math. Comp. 22 (1968), 699.
Corrigendum:
Math. Comp. 22 (1968), 699.
Corrigendum:
Math. Comp. 22 (1968), 246-247.
Corrigendum:
Math. Comp. 17 (1963), 487-488.
MathSciNet review:
0159796
Full-text PDF Free Access
References | Similar Articles | Additional Information
- [1] Daniel Shanks, On the conjecture of Hardy & Littlewood concerning the number of primes of the form 𝑛²+𝑎, Math. Comp. 14 (1960), 320–332. MR 120203, https://doi.org/10.1090/S0025-5718-1960-0120203-6
- [2] Daniel Shanks, Supplementary data and remarks concerning a Hardy-Littlewood conjecture, Math. Comp. 17 (1963), 188–193. MR 159797, https://doi.org/10.1090/S0025-5718-1963-0159797-6
- [3] Daniel Shanks, On numbers of the form 𝑛⁴+1, Math. Comput. 15 (1961), 186–189. MR 0120184, https://doi.org/10.1090/S0025-5718-1961-0120184-6
- [4] Daniel Shanks, A note on Gaussian twin primes, Math. Comput. 14 (1960), 201–203. MR 0111724, https://doi.org/10.1090/S0025-5718-1960-0111724-0
- [5] Paul T. Bateman and Roger A. Horn, A heuristic asymptotic formula concerning the distribution of prime numbers, Math. Comp. 16 (1962), 363–367. MR 148632, https://doi.org/10.1090/S0025-5718-1962-0148632-7
- [6] Paul T. Bateman and Rosemarie M. Stemmler, Waring’s problem for algebraic number fields and primes of the form (𝑝^{𝑟}-1)/(𝑝^{𝑑}-1), Illinois J. Math. 6 (1962), 142–156. MR 0138616
- [7] J. W. L. Glaisher, ``The Bernoullian function,'' Quart. J. Pure Appl. Math., v. 29, 1898, p. 1-168.
- [8] A. Fletcher, J. C. P. Miller, L. Rosenhead, and L. J. Comrie, An index of mathematical tables. Vol. I: Introduction. Part I: Index according to functions, Second edition, Published for Scientific Computing Service Ltd., London, by Addison-Wesley Publishing Co., Inc., Reading, Mass., 1962. MR 0142796
- [9] Edmund Landau, Elementary number theory, Chelsea Publishing Co., New York, N.Y., 1958. Translated by J. E. Goodman. MR 0092794
- [10] G. B. Mathews, Theory of numbers, 2nd ed, Chelsea Publishing Co., New York, 1961. MR 0126402
- [11] G. H. Hardy, Ramanujan, Chelsea, N. Y., 1959, p. 8.
- [12] Gordon Pall, The distribution of integers represented by binary quadratic forms, Bull. Amer. Math. Soc. 49 (1943), 447–449. MR 8084, https://doi.org/10.1090/S0002-9904-1943-07947-5
- [13] Daniel Shanks & Larry P. Schmid, ``Variations on a theorem of Landau,'' (to appear)
- [14] G. K. Stanley. ``Two assertions made by Ramanujan,'' J. London Math. Soc., v. 3, 1928, p. 232-237 and v. 4, 1929, p. 32.
- [15]
Daniel Shanks, ``The second-order term in the asymptotic expansion of
,'' (to appear)
- [16] Edmund Landau, Handbuch der Lehre von der Verteilung der Primzahlen, v. I, Chelsea, N. Y., 1953, p. 494-498.
- [17]
R. Liénard, Tables fondamentales à 50 décimales des Sommes
,
,
, Centre de Documentation universitaire, Paris, 1948.
- [18]
J. W. Wrench, Jr.,
, MTAC, v. 1, 1943-1945, p. 452, UMT 38.
Retrieve articles in Mathematics of Computation with MSC: 10.41, 10.03
Retrieve articles in all journals with MSC: 10.41, 10.03
Additional Information
DOI:
https://doi.org/10.1090/S0025-5718-1963-0159796-4
Article copyright:
© Copyright 1963
American Mathematical Society