## The calculation of certain Dirichlet series

HTML articles powered by AMS MathViewer

- by Daniel Shanks and John W. Wrench PDF
- Math. Comp.
**17**(1963), 136-154 Request permission

Corrigendum: Math. Comp.

**22**(1968), 699.

Corrigendum: Math. Comp.

**22**(1968), 699.

Corrigendum: Math. Comp.

**22**(1968), 246-247.

Corrigendum: Math. Comp.

**17**(1963), 487-488.

## References

- Daniel Shanks,
*On the conjecture of Hardy & Littlewood concerning the number of primes of the form $n^{2}+a$*, Math. Comp.**14**(1960), 320–332. MR**120203**, DOI 10.1090/S0025-5718-1960-0120203-6 - Daniel Shanks,
*Supplementary data and remarks concerning a Hardy-Littlewood conjecture*, Math. Comp.**17**(1963), 188–193. MR**159797**, DOI 10.1090/S0025-5718-1963-0159797-6 - Daniel Shanks,
*On numbers of the form $n^{4}+1$*, Math. Comput.**15**(1961), 186–189. MR**0120184**, DOI 10.1090/S0025-5718-1961-0120184-6 - Daniel Shanks,
*A note on Gaussian twin primes*, Math. Comput.**14**(1960), 201–203. MR**0111724**, DOI 10.1090/S0025-5718-1960-0111724-0 - Paul T. Bateman and Roger A. Horn,
*A heuristic asymptotic formula concerning the distribution of prime numbers*, Math. Comp.**16**(1962), 363–367. MR**148632**, DOI 10.1090/S0025-5718-1962-0148632-7 - Paul T. Bateman and Rosemarie M. Stemmler,
*Waring’s problem for algebraic number fields and primes of the form $(p^{r}-1)/(p^{d}-1)$*, Illinois J. Math.**6**(1962), 142–156. MR**138616**
J. W. L. Glaisher, “The Bernoullian function,” - A. Fletcher, J. C. P. Miller, L. Rosenhead, and L. J. Comrie,
*An index of mathematical tables. Vol. I: Introduction. Part I: Index according to functions*, 2nd ed., Published for Scientific Computing Service Ltd., London, by Addison-Wesley Publishing Co., Inc., Reading, Mass., 1962. MR**0142796** - Edmund Landau,
*Elementary number theory*, Chelsea Publishing Co., New York, N.Y., 1958. Translated by J. E. Goodman. MR**0092794** - G. B. Mathews,
*Theory of numbers*, Chelsea Publishing Co., New York, 1961. 2nd ed. MR**0126402**
G. H. Hardy, - Gordon Pall,
*The distribution of integers represented by binary quadratic forms*, Bull. Amer. Math. Soc.**49**(1943), 447–449. MR**8084**, DOI 10.1090/S0002-9904-1943-07947-5
Daniel Shanks & Larry P. Schmid, “Variations on a theorem of Landau,” (to appear)
G. K. Stanley. “Two assertions made by Ramanujan,”

*Quart. J. Pure Appl. Math.*, v. 29, 1898, p. 1-168.

*Ramanujan*, Chelsea, N. Y., 1959, p. 8.

*J. London Math. Soc.*, v. 3, 1928, p. 232-237 and v. 4, 1929, p. 32. Daniel Shanks, “The second-order term in the asymptotic expansion of $B(x)$,” (to appear) Edmund Landau,

*Handbuch der Lehre von der Verteilung der Primzahlen*, v. I, Chelsea, N. Y., 1953, p. 494-498. R. Liénard,

*Tables fondamentales à 50 décimales des Sommes*${S_n}$, ${u_n}$, ${\sum _n}$, Centre de Documentation universitaire, Paris, 1948. J. W. Wrench, Jr., ${\pi ^{ \pm n}}$,

*MTAC*, v. 1, 1943-1945, p. 452, UMT 38.

## Additional Information

- © Copyright 1963 American Mathematical Society
- Journal: Math. Comp.
**17**(1963), 136-154 - MSC: Primary 10.41; Secondary 10.03
- DOI: https://doi.org/10.1090/S0025-5718-1963-0159796-4
- MathSciNet review: 0159796