Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society since 1960 (published as Mathematical Tables and other Aids to Computation 1943-1959), Mathematics of Computation is devoted to research articles of the highest quality in computational mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.78.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


An iterative method for computing the generalized inverse of an arbitrary matrix
HTML articles powered by AMS MathViewer

by Adi Ben-Israel PDF
Math. Comp. 19 (1965), 452-455 Request permission


The iterative process, ${X_{n + 1}} = {X_n}(2I - A{X_n})$, for computing ${A^{ - 1}}$, is generalized to obtain the generalized inverse.
    G. Schulz, “Iterative Berechnung der reziproken Matrix,” Z. Angew. Math. Mech. v. 13, 1933, pp. 57–59.
  • R. Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc. 51 (1955), 406–413. MR 69793
  • A. Ben-Israel and A. Charnes, Contributions to the theory of generalized inverses, J. Soc. Indust. Appl. Math. 11 (1963), 667–699. MR 179192
  • W. Dück, Fehlerabschätzungen für das Iterationsverfahren von Schulz zur Bestimmung der Inversen einer Matrix, Z. Angew. Math. Mech. 40 (1960), 192–194 (German). MR 112248, DOI 10.1002/zamm.19600400410
  • Alston S. Householder, The theory of matrices in numerical analysis, Blaisdell Publishing Co. [Ginn and Co.], New York-Toronto-London, 1964. MR 0175290
Similar Articles
  • Retrieve articles in Mathematics of Computation with MSC: 65.35
  • Retrieve articles in all journals with MSC: 65.35
Additional Information
  • © Copyright 1965 American Mathematical Society
  • Journal: Math. Comp. 19 (1965), 452-455
  • MSC: Primary 65.35
  • DOI:
  • MathSciNet review: 0179915