Sharper bounds for the Chebyshev functions $\theta (x)$ and $\psi (x)$. II
HTML articles powered by AMS MathViewer
- by Lowell Schoenfeld PDF
- Math. Comp. 30 (1976), 337-360 Request permission
Corrigendum: Math. Comp. 30 (1976), 900.
Corrigendum: Math. Comp. 30 (1976), 900.
Abstract:
In this paper, bounds given in the first part of the paper are strengthened. In addition, it is shown that the interval $(x,x + x/16597)$ contains a prime for all $x \geqslant 2,010,760$; and explicit bounds for the Chebyshev functions are given under the assumption of the Riemann hypothesis.References
- M. M. Agrest and M. S. Maksimov, Theory of incomplete cylindrical functions and their applications, Die Grundlehren der mathematischen Wissenschaften, Band 160, Springer-Verlag, New York-Heidelberg, 1971. Translated from the Russian by H. E. Fettis, J. W. Goresh and D. A. Lee. MR 0346209, DOI 10.1007/978-3-642-65021-5 J. P. M. BINET, "Note sur l’intégrale $\smallint _a^y{y^{2i}}dy\;{e^{ - p/{y^2} - q{y^2}}}$ prise entre des limites arbitraires," C. R. Acad. Sci. Paris, v. 12, 1841, pp. 958-962.
- Richard P. Brent, The first occurrence of large gaps between successive primes, Math. Comp. 27 (1973), 959–963. MR 330021, DOI 10.1090/S0025-5718-1973-0330021-0
- Richard P. Brent, Irregularities in the distribution of primes and twin primes, Math. Comp. 29 (1975), 43–56. MR 369287, DOI 10.1090/S0025-5718-1975-0369287-1 HILDING FAXÉN, "Expansion in series of the integral $\smallint _y^\infty \;{e^{ - x(t \pm {t^{ - \mu }})}}{t^v}dt$," Ark. Mat. Astronom. Fys., v. 15, no. 13, 1921, 57 pp. J. P. GRAM, "Undersøgelser angaaende Maengen af Primtal under en given Graense," K. Danske Vidensk. Selskabs Skrifter, Naturv. og Math. Afd. ser. 6, v. 2, 1881-1886 (1884), pp. 183-308.
- Helge von Koch, Sur la distribution des nombres premiers, Acta Math. 24 (1901), no. 1, 159–182 (French). MR 1554926, DOI 10.1007/BF02403071
- L. J. Lander and T. R. Parkin, On first appearance of prime differences, Math. Comp. 21 (1967), 483–488. MR 230677, DOI 10.1090/S0025-5718-1967-0230677-4 DERRICK NORMAN LEHMER, List of Prime Numbers from 1 to 10,006,721, Carnegie Institution of Washington, Publication No. 165, Washington, D.C., 1914; reprinted, Hafner Publishing Co., New York, 1956.
- J. Barkley Rosser and Lowell Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64–94. MR 137689
- J. Barkley Rosser and Lowell Schoenfeld, Sharper bounds for the Chebyshev functions $\theta (x)$ and $\psi (x)$, Math. Comp. 29 (1975), 243–269. MR 457373, DOI 10.1090/S0025-5718-1975-0457373-7
Additional Information
- © Copyright 1976 American Mathematical Society
- Journal: Math. Comp. 30 (1976), 337-360
- MSC: Primary 10H05
- DOI: https://doi.org/10.1090/S0025-5718-1976-0457374-X
- MathSciNet review: 0457374