Sharper bounds for the Chebyshev functions $\theta (x)$ and $\psi (x)$. II

Author:
Lowell Schoenfeld

Journal:
Math. Comp. **30** (1976), 337-360

MSC:
Primary 10H05

DOI:
https://doi.org/10.1090/S0025-5718-1976-0457374-X

Corrigendum:
Math. Comp. **30** (1976), 900.

Corrigendum:
Math. Comp. **30** (1976), 900.

MathSciNet review:
0457374

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, bounds given in the first part of the paper are strengthened. In addition, it is shown that the interval $(x,x + x/16597)$ contains a prime for all $x \geqslant 2,010,760$; and explicit bounds for the Chebyshev functions are given under the assumption of the Riemann hypothesis.

- M. M. Agrest and M. S. Maksimov,
*Theory of incomplete cylindrical functions and their applications*, Springer-Verlag, New York-Heidelberg, 1971. Translated from the Russian by H. E. Fettis, J. W. Goresh and D. A. Lee; Die Grundlehren der mathematischen Wissenschaften, Band 160. MR**0346209**
J. P. M. BINET, "Note sur lâintĂ©grale $\smallint _a^y{y^{2i}}dy\;{e^{ - p/{y^2} - q{y^2}}}$ prise entre des limites arbitraires," - Richard P. Brent,
*The first occurrence of large gaps between successive primes*, Math. Comp.**27**(1973), 959â963. MR**330021**, DOI https://doi.org/10.1090/S0025-5718-1973-0330021-0 - Richard P. Brent,
*Irregularities in the distribution of primes and twin primes*, Math. Comp.**29**(1975), 43â56. MR**369287**, DOI https://doi.org/10.1090/S0025-5718-1975-0369287-1
HILDING FAXĂN, "Expansion in series of the integral $\smallint _y^\infty \;{e^{ - x(t \pm {t^{ - \mu }})}}{t^v}dt$," - Helge von Koch,
*Sur la distribution des nombres premiers*, Acta Math.**24**(1901), no. 1, 159â182 (French). MR**1554926**, DOI https://doi.org/10.1007/BF02403071 - L. J. Lander and T. R. Parkin,
*On first appearance of prime differences*, Math. Comp.**21**(1967), 483â488. MR**230677**, DOI https://doi.org/10.1090/S0025-5718-1967-0230677-4
DERRICK NORMAN LEHMER, - J. Barkley Rosser and Lowell Schoenfeld,
*Approximate formulas for some functions of prime numbers*, Illinois J. Math.**6**(1962), 64â94. MR**137689** - J. Barkley Rosser and Lowell Schoenfeld,
*Sharper bounds for the Chebyshev functions $\theta (x)$ and $\psi (x)$*, Math. Comp.**29**(1975), 243â269. MR**457373**, DOI https://doi.org/10.1090/S0025-5718-1975-0457373-7

*C. R. Acad. Sci. Paris*, v. 12, 1841, pp. 958-962.

*Ark. Mat. Astronom. Fys.*, v. 15, no. 13, 1921, 57 pp. J. P. GRAM, "UndersĂžgelser angaaende Maengen af Primtal under en given Graense,"

*K. Danske Vidensk. Selskabs Skrifter, Naturv. og Math. Afd. ser.*6, v. 2, 1881-1886 (1884), pp. 183-308.

*List of Prime Numbers from*1

*to*10,006,721, Carnegie Institution of Washington, Publication No. 165, Washington, D.C., 1914; reprinted, Hafner Publishing Co., New York, 1956.

Retrieve articles in *Mathematics of Computation*
with MSC:
10H05

Retrieve articles in all journals with MSC: 10H05

Additional Information

Article copyright:
© Copyright 1976
American Mathematical Society