The comparison of numerical methods for solving polynomial equations
Author:
Aurél Galántai
Journal:
Math. Comp. 32 (1978), 391-397
MSC:
Primary 65H05; Secondary 65E05
DOI:
https://doi.org/10.1090/S0025-5718-1978-0488698-X
MathSciNet review:
0488698
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper we compare the Turán process [5]-[6] with the Lehmer-Schur method [2]. We prove that the latter is better.
- [1] G. E. Collins, Computer algebra of polynomials and rational functions, Amer. Math. Monthly 80 (1973), 725–755. MR 323750, https://doi.org/10.2307/2318161
- [2] D. H. LEHMER, "A machine method for solving polynomial equations," J. Assoc. Comput. Mach., v. 8, 1961, pp. 151-163.
- [3] Anthony Ralston, A first course in numerical analysis, McGraw-Hill Book Co., New York-Toronto-London, 1965. MR 0191070
- [4] F. SZIDAROVSZKY, Introduction to Numerical Methods (in Hungarian), Közgazdásági és Jogi Könyvkiadó, Budapest, 1974.
- [5] P. TURÁN, "On the numerical solution of algebraic equations" (in Hungarian), MTA III, Osztály Közleményei, v. 18, 1968, pp. 223-235.
- [6] Paul Turán, Power sum method and the approximative solution of algebraic equations, Math. Comp. 29 (1975), 311–318. MR 368413, https://doi.org/10.1090/S0025-5718-1975-0368413-8
Retrieve articles in Mathematics of Computation with MSC: 65H05, 65E05
Retrieve articles in all journals with MSC: 65H05, 65E05
Additional Information
DOI:
https://doi.org/10.1090/S0025-5718-1978-0488698-X
Article copyright:
© Copyright 1978
American Mathematical Society