Class numbers of quadratic fields determined by solvability of Diophantine equations

Author:
R. A. Mollin

Journal:
Math. Comp. **48** (1987), 233-242

MSC:
Primary 11R11; Secondary 11R29

DOI:
https://doi.org/10.1090/S0025-5718-1987-0866112-5

MathSciNet review:
866112

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In the literature there has been considerable attention given to the exploration of relationships between certain diophantine equations and class numbers of quadratic fields. In this paper we provide criteria for the insolvability of certain diophantine equations. This result is then used to determine when related real quadratic fields have class number bigger than 1. Moreover, based on criteria which we find for the solvability of a certain class of diophantine equations, we are able to determine when the class number of related imaginary quadratic fields is divisible by a given integer.

**[1]**N. C. Ankeny, S. Chowla, and H. Hasse,*On the class-number of the maximal real subfield of a cyclotomic field*, J. Reine Angew. Math.**217**(1965), 217–220. MR**172861**, https://doi.org/10.1515/crll.1965.217.217**[2]**Takashi Azuhata,*On the fundamental units and the class numbers of real quadratic fields*, Nagoya Math. J.**95**(1984), 125–135. MR**759470**, https://doi.org/10.1017/S0027763000021036**[3]**Mary J. Cowles,*On the divisibility of the class number of imaginary quadratic fields*, J. Number Theory**12**(1980), no. 1, 113–115. MR**566877**, https://doi.org/10.1016/0022-314X(80)90081-5**[4]**Günter Degert,*Über die Bestimmung der Grundeinheit gewisser reell-quadratischer Zahlkörper*, Abh. Math. Sem. Univ. Hamburg**22**(1958), 92–97 (German). MR**92824**, https://doi.org/10.1007/BF02941943**[5]**Benedict H. Gross and David E. Rohrlich,*Some results on the Mordell-Weil group of the Jacobian of the Fermat curve*, Invent. Math.**44**(1978), no. 3, 201–224. MR**491708**, https://doi.org/10.1007/BF01403161**[6]**Helmut Hasse,*Über mehrklassige, aber eingeschlechtige reell-quadratische Zahlkörper*, Elem. Math.**20**(1965), 49–59 (German). MR**191889****[7]**Hong Wen Lu,*The continued fractions, class number and the others*, Sci. Sinica Ser. A**26**(1983), no. 12, 1275–1284. MR**745799****[8]**Masakazu Kutsuna,*On the fundamental units of real quadratic fields*, Proc. Japan Acad.**50**(1974), 580–583. MR**376603****[9]**Sheau Dong Lang,*Note on the class-number of the maximal real subfield of a cyclotomic field*, J. Reine Angew. Math.**290**(1977), 70–72. MR**447177**, https://doi.org/10.1515/crll.1977.290.70**[10]**R. A. Mollin,*Lower bounds for class numbers of real quadratic fields*, Proc. Amer. Math. Soc.**96**(1986), no. 4, 545–550. MR**826478**, https://doi.org/10.1090/S0002-9939-1986-0826478-X**[11]**R. A. Mollin,*Diophantine equations and class numbers*, J. Number Theory**24**(1986), no. 1, 7–19. MR**852186**, https://doi.org/10.1016/0022-314X(86)90053-3**[12]**R. A. Mollin,*On the insolubility of a class of Diophantine equations and the nontriviality of the class numbers of related real quadratic fields of Richaud-Degert type*, Nagoya Math. J.**105**(1987), 39–47. MR**881007**, https://doi.org/10.1017/S0027763000000738**[13]**Richard A. Mollin,*On class numbers of quadratic extensions of algebraic number fields*, Proc. Japan Acad. Ser. A Math. Sci.**62**(1986), no. 1, 33–36. MR**839801****[14]**C. Richaud, "Sur la résolution des équations ,"*Atti Accad. Pontif. Nuovi Lincei*, 1866, pp. 177-182.**[15]**Hiroshi Takeuchi,*On the class number of the maximal real subfield of a cyclotomic field*, Canadian J. Math.**33**(1981), no. 1, 55–58. MR**608854**, https://doi.org/10.4153/CJM-1981-006-8**[16]**Hideo Yokoi,*On the Diophantine equation 𝑥²-𝑝𝑦²=±4𝑞 and the class number of real subfields of a cyclotomic field*, Nagoya Math. J.**91**(1983), 151–161. MR**716789**, https://doi.org/10.1017/S0027763000020481**[17]**Hideo Yokoi,*On real quadratic fields containing units with norm -1*, Nagoya Math. J.**33**(1968), 139–152. MR**233803****[18]**Hideo Yokoi,*On the fundamental unit of real quadratic fields with norm 1*, J. Number Theory**2**(1970), 106–115. MR**252351**, https://doi.org/10.1016/0022-314X(70)90010-7

Retrieve articles in *Mathematics of Computation*
with MSC:
11R11,
11R29

Retrieve articles in all journals with MSC: 11R11, 11R29

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1987-0866112-5

Keywords:
Quadratic field,
class number,
diophantine equation,
unit

Article copyright:
© Copyright 1987
American Mathematical Society