Power series expansions of Riemann’s $\xi$ function
HTML articles powered by AMS MathViewer
- by J. B. Keiper PDF
- Math. Comp. 58 (1992), 765-773 Request permission
Abstract:
We show how high-precision values of the coefficients of power series expansions of functions related to Riemann’s $\xi$, function may be calculated. We also show how the Stieltjes constants can be evaluated using this scheme and how the Riemann hypothesis can be expressed in terms of the behavior of two of the sequences of coefficients. High-precision values for the coefficients of these power series are found using Mathematica extsctm.References
- Milton Abramowitz and Irene A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, No. 55, U. S. Government Printing Office, Washington, D.C., 1964. For sale by the Superintendent of Documents. MR 0167642
- Jan Bohman and Carl-Erik Fröberg, The Stieltjes function—definition and properties, Math. Comp. 51 (1988), no. 183, 281–289. MR 942155, DOI 10.1090/S0025-5718-1988-0942155-9
- H. M. Edwards, Riemann’s zeta function, Pure and Applied Mathematics, Vol. 58, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1974. MR 0466039
- D. H. Lehmer, The sum of like powers of the zeros of the Riemann zeta function, Math. Comp. 50 (1988), no. 181, 265–273. MR 917834, DOI 10.1090/S0025-5718-1988-0917834-X B. Riemann, Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse, Gesammelte Werke, Teubner, Leipzig, 1892, pp. 145-153. (Reprinted by Dover Books, New York, 1953.) Also in Edwards [3, p. 299].
Additional Information
- © Copyright 1992 American Mathematical Society
- Journal: Math. Comp. 58 (1992), 765-773
- MSC: Primary 11M06
- DOI: https://doi.org/10.1090/S0025-5718-1992-1122072-5
- MathSciNet review: 1122072