Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Class numbers of some abelian extensions of rational function fields


Authors: Sunghan Bae, Hwanyup Jung and Jaehyun Ahn
Journal: Math. Comp. 73 (2004), 377-386
MSC (2000): Primary 11R60, 11R29
DOI: https://doi.org/10.1090/S0025-5718-03-01528-X
Published electronically: April 28, 2003
MathSciNet review: 2034128
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $P$ be a monic irreducible polynomial. In this paper we generalize the determinant formula for $h(K_{P^n}^+)$ of Bae and Kang and the formula for $h^{-}(K_{P^n})$ of Jung and Ahn to any subfields $K$ of the cyclotomic function field $K_{P^n}.$ By using these formulas, we calculate the class numbers $h^{-}(K), h(K^+)$ of all subfields $K$ of $K_P$ when $q$ and $\deg (P)$ are small.


References [Enhancements On Off] (What's this?)

  • Bruno Angles, On Hilbert class field towers of global function fields, Drinfeld modules, modular schemes and applications (Alden-Biesen, 1996) World Sci. Publ., River Edge, NJ, 1997, pp. 261–271. MR 1630607
  • Emil Artin, The collected papers of Emil Artin, Addison–Wesley Publishing Co., Inc., Reading, Mass.-London, 1965. Edited by Serge Lang and John T. Tate. MR 0176888
  • S. Bae, H. Jung and J. Ahn, Cyclotomic units and Stickelberger ideals of global function fields, to appear in Trans. Amer. Math. Soc.
  • S. Bae and P. Kang, Class numbers of cyclotomic function fields. Acta Arith. 102 (2002), no. 3, 251–259.
  • K. Girstmair, The relative class numbers of imaginary cyclic fields of degrees $4, 6, 8,$ and $10$. Math. Comp. 61 (1993), no. 204, 881–887.
  • H. Jung and J. Ahn, On the relative class number of cyclotomic function fields. Acta Arith. 107 (2003), no. 1, 91–101.
  • H. Jung and J. Ahn, Demjanenko matrix and recursion formula for relative class number over function fields. J. Number Theory 98 (2003), no. 1, 55–66.
  • Radan Kučera, Formulae for the relative class number of an imaginary abelian field in the form of a determinant, Nagoya Math. J. 163 (2001), 167–191. MR 1855194, DOI https://doi.org/10.1017/S0027763000007959
  • Linsheng Yin, Stickelberger ideals and relative class numbers in function fields, J. Number Theory 81 (2000), no. 1, 162–169. MR 1743498, DOI https://doi.org/10.1006/jnth.1999.2472

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 11R60, 11R29

Retrieve articles in all journals with MSC (2000): 11R60, 11R29


Additional Information

Sunghan Bae
Affiliation: Department of Mathematics, KAIST, Daejon, 305-701 Korea
Email: shbae@math.kaist.ac.kr

Hwanyup Jung
Affiliation: Department of Mathematics, KAIST, Daejon, 305-701 Korea
Email: hyjung@mathx.kaist.ac.kr

Jaehyun Ahn
Affiliation: Department of Mathematics, KAIST, Daejon, 305-701 Korea
Email: jaehyun@mathx.kaist.ac.kr

Keywords: Class number, function field
Received by editor(s): March 27, 2002
Received by editor(s) in revised form: May 20, 2002
Published electronically: April 28, 2003
Article copyright: © Copyright 2003 American Mathematical Society