Arithmetic $(1;e)$-curves and Belyĭ maps
HTML articles powered by AMS MathViewer
- by Jeroen Sijsling;
- Math. Comp. 81 (2012), 1823-1855
- DOI: https://doi.org/10.1090/S0025-5718-2012-02560-9
- Published electronically: January 23, 2012
- PDF | Request permission
Abstract:
Using the theory of Belyĭ maps, we calculate the algebraic curves associated to the Fuchsian groups of signature $(1;e)$ that are commensurable with a triangle group, along with the Picard-Fuchs differential equations on these curves, which are related to pullbacks of hypergeometric differential equations. We focus particularly on the $(1;e)$-groups that are arithmetic.References
- Yves André, $G$-functions and geometry, Aspects of Mathematics, E13, Friedr. Vieweg & Sohn, Braunschweig, 1989. MR 990016, DOI 10.1007/978-3-663-14108-2
- P. Bayer and A. Travesa, Uniformizing functions for certain Shimura curves, in the case $D=6$, Acta Arith. 126 (2007), no. 4, 315–339. MR 2289964, DOI 10.4064/aa126-4-3
- Alan F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1995. Corrected reprint of the 1983 original. MR 1393195
- Frits Beukers and Alexa van der Waall, Lamé equations with algebraic solutions, J. Differential Equations 197 (2004), no. 1, 1–25. MR 2030146, DOI 10.1016/j.jde.2003.10.017
- Bryan Birch, Noncongruence subgroups, covers and drawings, The Grothendieck theory of dessins d’enfants (Luminy, 1993) London Math. Soc. Lecture Note Ser., vol. 200, Cambridge Univ. Press, Cambridge, 1994, pp. 25–46. MR 1305392
- Paula Beazley Cohen, Claude Itzykson, and Jürgen Wolfart, Fuchsian triangle groups and Grothendieck dessins. Variations on a theme of Belyĭ, Comm. Math. Phys. 163 (1994), no. 3, 605–627. MR 1284798
- Jean-Marc Couveignes, Calcul et rationalité de fonctions de Belyĭ en genre $0$, Ann. Inst. Fourier (Grenoble) 44 (1994), no. 1, 1–38 (French, with English and French summaries). MR 1262878, DOI 10.5802/aif.1387
- Koji Doi and Hidehisa Naganuma, On the algebraic curves uniformized by arithmetical automorphic functions, Ann. of Math. (2) 86 (1967), 449–460. MR 219537, DOI 10.2307/1970610
- Martin Eichler, Zur Zahlentheorie der Quaternionen-Algebren, J. Reine Angew. Math. 195 (1955), 127–151 (1956) (German). MR 80767, DOI 10.1515/crll.1955.195.127
- Noam D. Elkies, Shimura curve computations, Algorithmic number theory (Portland, OR, 1998) Lecture Notes in Comput. Sci., vol. 1423, Springer, Berlin, 1998, pp. 1–47. MR 1726059, DOI 10.1007/BFb0054850
- Noam D. Elkies, Shimura curves for level-3 subgroups of the $(2,3,7)$ triangle group, and some other examples, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 4076, Springer, Berlin, 2006, pp. 302–316. MR 2282932, DOI 10.1007/11792086_{2}2
- Josep González and Victor Rotger, Non-elliptic Shimura curves of genus one, J. Math. Soc. Japan 58 (2006), no. 4, 927–948. MR 2276174
- H. Hijikata, A. Pizer, and T. Shemanske, Orders in quaternion algebras, J. Reine Angew. Math. 394 (1989), 59–106. MR 977435
- H. W. Lenstra, Galois theory for schemes, Notes available at http://websites.math.leidenuniv.nl/algebra/GSchemes.pdf.
- C. Maclachlan and G. Rosenberger, Two-generator arithmetic Fuchsian groups, Math. Proc. Cambridge Philos. Soc. 93 (1983), no. 3, 383–391. MR 698343, DOI 10.1017/S0305004100060709
- G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 17, Springer-Verlag, Berlin, 1991. MR 1090825, DOI 10.1007/978-3-642-51445-6
- Hossein Movasati and Stefan Reiter, Heun equations coming from geometry, Preprint available at http://w3.impa.br/ hossein/myarticles/movasati-reiter-08.pdf.
- Jean-Pierre Serre, Topics in Galois theory, Research Notes in Mathematics, vol. 1, Jones and Bartlett Publishers, Boston, MA, 1992. Lecture notes prepared by Henri Damon [Henri Darmon]; With a foreword by Darmon and the author. MR 1162313
- Hironori Shiga, Toru Tsutsui, and Jürgen Wolfart, Triangle Fuchsian differential equations with apparent singularities, Osaka J. Math. 41 (2004), no. 3, 625–658. With an appendix by Paula B. Cohen. MR 2107667
- Goro Shimura, On canonical models of arithmetic quotients of bounded symmetric domains, Ann. of Math. (2) 91 (1970), 144–222. MR 257031, DOI 10.2307/1970604
- Jeroen Sijsling, Equations for arithmetic pointed tori, Ph.D. thesis, Universiteit Utrecht, 2010.
- —, Lamé equations and hypergeometric pullbacks, 2010, Webpage at http://sites.google.com/site/sijsling/programs.
- —, Canonical models for arithmetic $(1;e)$-curves, In preparation, 2011.
- David Singerman, Subgroups of Fuschian groups and finite permutation groups, Bull. London Math. Soc. 2 (1970), 319–323. MR 281805, DOI 10.1112/blms/2.3.319
- Kisao Takeuchi, A characterization of arithmetic Fuchsian groups, J. Math. Soc. Japan 27 (1975), no. 4, 600–612. MR 398991, DOI 10.2969/jmsj/02740600
- Kisao Takeuchi, Commensurability classes of arithmetic triangle groups, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977), no. 1, 201–212. MR 463116
- Kisao Takeuchi, Arithmetic Fuchsian groups with signature $(1;e)$, J. Math. Soc. Japan 35 (1983), no. 3, 381–407. MR 702765, DOI 10.2969/jmsj/03530381
- M. Van Hoeij and R. Vidunas, Transformations between the Heun and Gauss hypergeometric functions of the hyperbolic type, Paper in progress; data available at http://www.math.fsu.edu/ hoeij/files/Heun/TextFormat, 2011.
- Marie-France Vignéras, Arithmétique des algèbres de quaternions, Lecture Notes in Mathematics, vol. 800, Springer, Berlin, 1980 (French). MR 580949
- John Voight, Computing CM points on Shimura curves arising from cocompact arithmetic triangle groups, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 4076, Springer, Berlin, 2006, pp. 406–420. MR 2282939, DOI 10.1007/11792086_{2}9
- John Voight, Shimura curves of genus at most two, Math. Comp. 78 (2009), no. 266, 1155–1172. MR 2476577, DOI 10.1090/S0025-5718-08-02163-7
- Masaaki Yoshida, Fuchsian differential equations, Aspects of Mathematics, E11, Friedr. Vieweg & Sohn, Braunschweig, 1987. With special emphasis on the Gauss-Schwarz theory. MR 986252, DOI 10.1007/978-3-663-14115-0
Bibliographic Information
- Jeroen Sijsling
- Affiliation: Mathematisch Instituut Universiteit Utrecht, Postbus 80010, 3508TA Utrecht, The Netherlands
- Address at time of publication: IRMAR–Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cédex, France
- MR Author ID: 974789
- ORCID: 0000-0002-0632-9910
- Email: sijsling@gmail.com
- Received by editor(s): October 13, 2010
- Received by editor(s) in revised form: March 24, 2011
- Published electronically: January 23, 2012
- © Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 81 (2012), 1823-1855
- MSC (2010): Primary 14H57; Secondary 14G35, 14Q05, 34B30
- DOI: https://doi.org/10.1090/S0025-5718-2012-02560-9
- MathSciNet review: 2904604