The highest order superconvergence for bi- degree rectangular elements at nodes: A proof of
-conjecture
Authors:
Chuanmiao Chen and Shufang Hu
Journal:
Math. Comp. 82 (2013), 1337-1355
MSC (2010):
Primary 65N30, 65N15
DOI:
https://doi.org/10.1090/S0025-5718-2012-02653-6
Published electronically:
December 5, 2012
MathSciNet review:
3042566
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We proved the highest order superconvergence at nodes
, based on Element Orthogonality Analysis (EOA), correction techniques and tensor product, where
is the solution for the Poisson equation
in a rectangle
,
on
, and
is its bi-
degree rectangular finite element approximation. This conclusion is also verified by numerical experiments for
.
- 1. I. Babuška, T. Strouboulis, C. S. Upadhyay, and S. K. Gangaraj, Computer-based proof of the existence of superconvergence points in the finite element method; superconvergence of the derivatives in finite element solutions of Laplace’s, Poisson’s, and the elasticity equations, Numer. Methods Partial Differential Equations 12 (1996), no. 3, 347–392. MR 1388445, https://doi.org/10.1002/num.1690120303
- 2. Ivo Babuška and Theofanis Strouboulis, The finite element method and its reliability, Numerical Mathematics and Scientific Computation, The Clarendon Press, Oxford University Press, New York, 2001. MR 1857191
- 3. J. H. Bramble and A. H. Schatz, Higher order local accuracy by averaging in the finite element method, Math. Comp. 31 (1977), no. 137, 94–111. MR 431744, https://doi.org/10.1090/S0025-5718-1977-0431744-9
- 4. Jan Brandts and Michal Křížek, History and future of superconvergence in three-dimensional finite element methods, Finite element methods (Jyväskylä, 2000) GAKUTO Internat. Ser. Math. Sci. Appl., vol. 15, Gakk\B{o}tosho, Tokyo, 2001, pp. 22–33. MR 1896264
- 5. Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, 3rd ed., Texts in Applied Mathematics, vol. 15, Springer, New York, 2008. MR 2373954
- 6. Chuan Miao Chen, The good points of the approximate solution of a two-point boundary value problem by the Galerkin method, Numer. Math. J. Chinese Univ. 1 (1979), no. 1, 73–79 (Chinese, with English summary). MR 574204
- 7. Chuan Miao Chen, Superconvergence of finite element solutions and their derivatives, Numer. Math. J. Chinese Univ. 3 (1981), no. 2, 118–125 (Chinese, with English summary). MR 635547
- 8. Chuanmiao Chen, Element analysis method and superconvergence, Finite element methods (Jyväskylä, 1997) Lecture Notes in Pure and Appl. Math., vol. 196, Dekker, New York, 1998, pp. 71–84. MR 1602829
- 9. Chuanmiao Chen, Superconvergence for triangular finite elements, Sci. China Ser. A 42 (1999), no. 9, 917–924. MR 1736582, https://doi.org/10.1007/BF02880383
- 10. Chuanmiao Chen, Orthogonality correction technique in superconvergence analysis, Int. J. Numer. Anal. Model. 2 (2005), no. 1, 31–42. MR 2112656
- 11. C. M. Chen, Superconvergence results in finite-element analysis, Surv. on Math. for Industry 11(2005), 131-157.
- 12. C. M. Chen, Structure Theory of Superconvergence of Finite Elements (in Chinese), Hunan Science and Technique Press, Changsha, 2001, 1-464.
- 13. C. M. Chen, and Y. Q. Huang, High Accuracy Theory of Finite Elements (in Chinese), Hunan Science and Technique Press, Changsha, 1995, 1-638.
- 14. Jim Douglas Jr. and Todd Dupont, Some superconvergence results for Galerkin methods for the approximate solution of two-point boundary problems, Topics in numerical analysis (Proc. Roy. Irish Acad. Conf., University Coll., Dublin, 1972) Academic Press, London, 1973, pp. 89–92. MR 0366044
- 15. Jim Douglas Jr. and Todd Dupont, Galerkin approximations for the two point boundary problem using continuous, piecewise polynomial spaces, Numer. Math. 22 (1974), 99–109. MR 362922, https://doi.org/10.1007/BF01436724
- 16. Jim Douglas Jr., Todd Dupont, and Mary Fanett Wheeler, An 𝐿^{∞} estimate and a superconvergence result for a Galerkin method for elliptic equations based on tensor products of piecewise polynomials, Rev. Française Automat. Informat. Recherche Opérationnelle Sér Rouge 8 (1974), no. R-2, 61–66 (English, with Loose French summary). MR 0359358
- 17. J. Frehse and R. Rannacher, Eine 𝐿¹-Fehlerabschätzung für diskrete Grundlösungen in der Methode der finiten Elemente, Finite Elemente (Tagung, Univ. Bonn, Bonn, 1975) Inst. Angew. Math., Univ. Bonn, Bonn, 1976, pp. 92–114. Bonn. Math. Schrift., No. 89 (German, with English summary). MR 0471370
- 18. V. V. Fufaev, On the Dirichlet problem for regions with corners, Soviet Math. Dokl. 1 (1960), 199–201. MR 0118981
- 19. P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, vol. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985. MR 775683
- 20. Michal Křížek and Pekka Neittaanmäki, Superconvergence phenomenon in the finite element method arising from averaging gradients, Numer. Math. 45 (1984), no. 1, 105–116. MR 761883, https://doi.org/10.1007/BF01379664
- 21. Michal Křížek and Pekka Neittaanmäki, Bibliography on superconvergence, Finite element methods (Jyväskylä, 1997) Lecture Notes in Pure and Appl. Math., vol. 196, Dekker, New York, 1998, pp. 315–348. MR 1602730
- 22. Pierre Lesaint and Miloš Zlámal, Superconvergence of the gradient of finite element solutions, RAIRO Anal. Numér. 13 (1979), no. 2, 139–166 (English, with French summary). MR 533879, https://doi.org/10.1051/m2an/1979130201391
- 23. Rolf Rannacher and Ridgway Scott, Some optimal error estimates for piecewise linear finite element approximations, Math. Comp. 38 (1982), no. 158, 437–445. MR 645661, https://doi.org/10.1090/S0025-5718-1982-0645661-4
- 24. A. H. Schatz, I. H. Sloan, and L. B. Wahlbin, Superconvergence in finite element methods and meshes that are locally symmetric with respect to a point, SIAM J. Numer. Anal. 33 (1996), no. 2, 505–521. MR 1388486, https://doi.org/10.1137/0733027
- 25. Ridgway Scott, Optimal 𝐿^{∞} estimates for the finite element method on irregular meshes, Math. Comp. 30 (1976), no. 136, 681–697. MR 436617, https://doi.org/10.1090/S0025-5718-1976-0436617-2
- 26. Vidar Thomée, High order local approximations to derivatives in the finite element method, Math. Comp. 31 (1977), no. 139, 652–660. MR 438664, https://doi.org/10.1090/S0025-5718-1977-0438664-4
- 27. Vidar Thomée, Galerkin finite element methods for parabolic problems, Springer Series in Computational Mathematics, vol. 25, Springer-Verlag, Berlin, 1997. MR 1479170
- 28. E. A. Volkov, On differential properties of solutions of boundary value problems for the Laplace and Poisson equations on a rectangle, Trudy Mat. Inst. Steklov 77 (1965), 89–112 (Russian). MR 0192077
- 29. Lars B. Wahlbin, Superconvergence in Galerkin finite element methods, Lecture Notes in Mathematics, vol. 1605, Springer-Verlag, Berlin, 1995. MR 1439050
- 30. Lars B. Wahlbin, General principles of superconvergence in Galerkin finite element methods, Finite element methods (Jyväskylä, 1997) Lecture Notes in Pure and Appl. Math., vol. 196, Dekker, New York, 1998, pp. 269–285. MR 1602738
- 31. Miloš Zlámal, Some superconvergence results in the finite element method, Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975) Springer, Berlin, 1977, pp. 353–362. Lecture Notes in Math., Vol. 606. MR 0488863
- 32. Miloš Zlámal, Superconvergence and reduced integration in the finite element method, Math. Comp. 32 (1978), no. 143, 663–685. MR 495027, https://doi.org/10.1090/S0025-5718-1978-0495027-4
- 33. Jun Ming Zhou and Qun Lin, A supplement to superconvergence of the bi-𝑝 conjecture—weighted norm estimates for the discrete Green function, Math. Pract. Theory 37 (2007), no. 23, 87–94 (Chinese, with English and Chinese summaries). MR 2406765
- 34. Z. M. Zhang (ed.), Superconvergence in the Finite Element Method, in: Proc. The Third Inter. Conf. Superconvergence and A Posteriori Error Estimates in FEM's, held in Hunan Normal University, Changsha, China, 2004. Inter. J. Numer. Anal. Model. 2(2005), no. 1 and 3(2006), no.3.
- 35. J. H. Brandts, M. Krizek (eds.), Superconvergence in the Finite Element Method, in: Proc. of The Fourth Inter. Conf. Superconvergence and A Posteriori Error Estimates in FEM's, held in Inst. of Math., Prague, 2008, Special Issue of Applications of Mathematics, No. 3 (supplement in No. 4), vol. 54, (2009), pp. 120+40.
- 36. Jan Brandts and Michal Křížek, Superconvergence of tetrahedral quadratic finite elements, J. Comput. Math. 23 (2005), no. 1, 27–36. MR 2124141
- 37. Runchang Lin and Zhimin Zhang, Natural superconvergent points of triangular finite elements, Numer. Methods Partial Differential Equations 20 (2004), no. 6, 864–906. MR 2092411, https://doi.org/10.1002/num.20013
- 38. Runchang Lin and Zhimin Zhang, Natural superconvergence points in three-dimensional finite elements, SIAM J. Numer. Anal. 46 (2008), no. 3, 1281–1297. MR 2390994, https://doi.org/10.1137/070681168
- 39. Zhimin Zhang, Derivative superconvergent points in finite element solutions of harmonic functions—a theoretical justification, Math. Comp. 71 (2002), no. 240, 1421–1430. MR 1933038, https://doi.org/10.1090/S0025-5718-01-01398-9
- 40. Zhi-min Zhang and Ahmed Naga, Natural superconvergent points of equilateral triangular finite elements—a numerical example, J. Comput. Math. 24 (2006), no. 1, 19–24. MR 2196865
Retrieve articles in Mathematics of Computation with MSC (2010): 65N30, 65N15
Retrieve articles in all journals with MSC (2010): 65N30, 65N15
Additional Information
Chuanmiao Chen
Affiliation:
College of Mathematics and Computer Science, Hunan Normal University, Changsha, 410081 Hunan, People’s Republic of China
Email:
cmchen@hunnu.edu.cn
Shufang Hu
Affiliation:
College of Mathematics and Computer Science, Hunan Normal University, Changsha, 410081 Hunan, People’s Republic of China
Email:
shufanghu@163.com
DOI:
https://doi.org/10.1090/S0025-5718-2012-02653-6
Keywords:
bi-$k$ degree rectangular element,
highest order superconvergence,
element orthogonality analysis,
correction function,
tensor product
Received by editor(s):
November 23, 2009
Received by editor(s) in revised form:
November 1, 2010, June 21, 2011, September 26, 2011, October 3, 2011, and November 22, 2011
Published electronically:
December 5, 2012
Additional Notes:
The first author was supported by The National Natural Science Foundation of China (No. 10771063), Key Laboratory of High Performance Computation and Stochastic Information Processing, Hunan Province and Ministry of Education, Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, and The Graduate Student Research Innovation Foundation of Hunan (No. CX2011B184)
Article copyright:
© Copyright 2012
American Mathematical Society