On the accuracy of finite element approximations to a class of interface problems
HTML articles powered by AMS MathViewer
- by Johnny Guzmán, Manuel A. Sánchez and Marcus Sarkis;
- Math. Comp. 85 (2016), 2071-2098
- DOI: https://doi.org/10.1090/mcom3051
- Published electronically: November 10, 2015
- PDF | Request permission
Abstract:
We define piecewise linear and continuous finite element methods for a class of interface problems in two dimensions. Correction terms are added to the right-hand side of the natural method to render it second-order accurate. We prove that the method is second-order accurate on general quasi-uniform meshes at the nodal points. Finally, we show that the natural method, although non-optimal near the interface, is optimal for points $\mathcal {O}(\sqrt {h \log (\frac {1}{h})})$ away from the interface.References
- Slimane Adjerid, Mohamed Ben-Romdhane, and Tao Lin, Higher degree immersed finite element methods for second-order elliptic interface problems, Int. J. Numer. Anal. Model. 11 (2014), no. 3, 541–566. MR 3218337
- Chandrasekhar Annavarapu, Martin Hautefeuille, and John E. Dolbow, A robust Nitsche’s formulation for interface problems, Comput. Methods Appl. Mech. Engrg. 225/228 (2012), 44–54. MR 2917495, DOI 10.1016/j.cma.2012.03.008
- J. Thomas Beale and Anita T. Layton, On the accuracy of finite difference methods for elliptic problems with interfaces, Commun. Appl. Math. Comput. Sci. 1 (2006), 91–119. MR 2244270, DOI 10.2140/camcos.2006.1.91
- Jacob Bedrossian, James H. von Brecht, Siwei Zhu, Eftychios Sifakis, and Joseph M. Teran, A second order virtual node method for elliptic problems with interfaces and irregular domains, J. Comput. Phys. 229 (2010), no. 18, 6405–6426. MR 2660312, DOI 10.1016/j.jcp.2010.05.002
- Daniele Boffi and Lucia Gastaldi, A finite element approach for the immersed boundary method, Comput. & Structures 81 (2003), no. 8-11, 491–501. In honour of Klaus-Jürgen Bathe. MR 2001876, DOI 10.1016/S0045-7949(02)00404-2
- Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, Texts in Applied Mathematics, vol. 15, Springer-Verlag, New York, 1994. MR 1278258, DOI 10.1007/978-1-4757-4338-8
- Erik Burman, Ghost penalty, C. R. Math. Acad. Sci. Paris 348 (2010), no. 21-22, 1217–1220 (English, with English and French summaries). MR 2738930, DOI 10.1016/j.crma.2010.10.006
- Erik Burman, Projection stabilization of Lagrange multipliers for the imposition of constraints on interfaces and boundaries, Numer. Methods Partial Differential Equations 30 (2014), no. 2, 567–592. MR 3163976, DOI 10.1002/num.21829
- Erik Burman and Peter Hansbo, Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method, Comput. Methods Appl. Mech. Engrg. 199 (2010), no. 41-44, 2680–2686. MR 2728820, DOI 10.1016/j.cma.2010.05.011
- Erik Burman and Peter Hansbo, Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method, Appl. Numer. Math. 62 (2012), no. 4, 328–341. MR 2899249, DOI 10.1016/j.apnum.2011.01.008
- Erik Burman and Paolo Zunino, Numerical approximation of large contrast problems with the unfitted Nitsche method, Frontiers in numerical analysis—Durham 2010, Lect. Notes Comput. Sci. Eng., vol. 85, Springer, Heidelberg, 2012, pp. 227–282. MR 3051411, DOI 10.1007/978-3-642-23914-4_{4}
- C.-C. Chu, I. G. Graham, and T.-Y. Hou, A new multiscale finite element method for high-contrast elliptic interface problems, Math. Comp. 79 (2010), no. 272, 1915–1955. MR 2684351, DOI 10.1090/S0025-5718-2010-02372-5
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. MR 1814364
- Yan Gong, Bo Li, and Zhilin Li, Immersed-interface finite-element methods for elliptic interface problems with nonhomogeneous jump conditions, SIAM J. Numer. Anal. 46 (2007/08), no. 1, 472–495. MR 2377272, DOI 10.1137/060666482
- J. Guzmán, D. Leykekhman, J. Rossmann, and A. H. Schatz, Hölder estimates for Green’s functions on convex polyhedral domains and their applications to finite element methods, Numer. Math. 112 (2009), no. 2, 221–243. MR 2495783, DOI 10.1007/s00211-009-0213-y
- Xiaoming He, Tao Lin, and Yanping Lin, Immersed finite element methods for elliptic interface problems with non-homogeneous jump conditions, Int. J. Numer. Anal. Model. 8 (2011), no. 2, 284–301. MR 2740492
- Songming Hou and Xu-Dong Liu, A numerical method for solving variable coefficient elliptic equation with interfaces, J. Comput. Phys. 202 (2005), no. 2, 411–445. MR 2145387, DOI 10.1016/j.jcp.2004.07.016
- Songming Hou, Peng Song, Liqun Wang, and Hongkai Zhao, A weak formulation for solving elliptic interface problems without body fitted grid, J. Comput. Phys. 249 (2013), 80–95. MR 3072968, DOI 10.1016/j.jcp.2013.04.025
- Songming Hou, Wei Wang, and Liqun Wang, Numerical method for solving matrix coefficient elliptic equation with sharp-edged interfaces, J. Comput. Phys. 229 (2010), no. 19, 7162–7179. MR 2677772, DOI 10.1016/j.jcp.2010.06.005
- Randall J. LeVeque and Zhi Lin Li, The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal. 31 (1994), no. 4, 1019–1044. MR 1286215, DOI 10.1137/0731054
- Zhilin Li, The immersed interface method: A numerical approach for partial differential equations with interfaces, ProQuest LLC, Ann Arbor, MI, 1994. Thesis (Ph.D.)–University of Washington. MR 2691718
- Yang Liu and Yoichiro Mori, Properties of discrete delta functions and local convergence of the immersed boundary method, SIAM J. Numer. Anal. 50 (2012), no. 6, 2986–3015. MR 3022251, DOI 10.1137/110836699
- A. Mayo and A. Greenbaum, Fast parallel iterative solution of Poisson’s and the biharmonic equations on irregular regions, SIAM J. Sci. Statist. Comput. 13 (1992), no. 1, 101–118. MR 1145178, DOI 10.1137/0913006
- Anita Mayo, The fast solution of Poisson’s and the biharmonic equations on irregular regions, SIAM J. Numer. Anal. 21 (1984), no. 2, 285–299. MR 736332, DOI 10.1137/0721021
- Anita Mayo, Fast high order accurate solution of Laplace’s equation on irregular regions, SIAM J. Sci. Statist. Comput. 6 (1985), no. 1, 144–157. MR 773287, DOI 10.1137/0906012
- Yoichiro Mori, Convergence proof of the velocity field for a Stokes flow immersed boundary method, Comm. Pure Appl. Math. 61 (2008), no. 9, 1213–1263. MR 2431702, DOI 10.1002/cpa.20233
- Charles S. Peskin, Numerical analysis of blood flow in the heart, J. Comput. Phys. 25 (1977), no. 3, 220–252. MR 490027, DOI 10.1016/0021-9991(77)90100-0
- Charles S. Peskin and Beth Feller Printz, Improved volume conservation in the computation of flows with immersed elastic boundaries, J. Comput. Phys. 105 (1993), no. 1, 33–46. MR 1210858, DOI 10.1006/jcph.1993.1051
- Rolf Rannacher and Ridgway Scott, Some optimal error estimates for piecewise linear finite element approximations, Math. Comp. 38 (1982), no. 158, 437–445. MR 645661, DOI 10.1090/S0025-5718-1982-0645661-4
- P.-A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975) Lecture Notes in Math., Vol. 606, Springer, Berlin-New York, 1977, pp. 292–315. MR 483555
- A. H. Schatz and L. B. Wahlbin, Interior maximum-norm estimates for finite element methods. II, Math. Comp. 64 (1995), no. 211, 907–928. MR 1297478, DOI 10.1090/S0025-5718-1995-1297478-7
- L. Ridgway Scott and Shangyou Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp. 54 (1990), no. 190, 483–493. MR 1011446, DOI 10.1090/S0025-5718-1990-1011446-7
Bibliographic Information
- Johnny Guzmán
- Affiliation: Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912
- MR Author ID: 775211
- Email: johnny_guzman@brown.edu
- Manuel A. Sánchez
- Affiliation: Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912
- MR Author ID: 895873
- Email: manuel_sanchez_uribe@brown.edu
- Marcus Sarkis
- Affiliation: Department of Mathematical Sciences, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609
- MR Author ID: 358674
- Email: msarkis@wpi.edu
- Received by editor(s): March 28, 2014
- Received by editor(s) in revised form: October 10, 2014, December 31, 2014, and February 25, 2015
- Published electronically: November 10, 2015
- © Copyright 2015 American Mathematical Society
- Journal: Math. Comp. 85 (2016), 2071-2098
- MSC (2010): Primary 65N30, 65N15
- DOI: https://doi.org/10.1090/mcom3051
- MathSciNet review: 3511275