Approximately convex functions
HTML articles powered by AMS MathViewer
- by D. H. Hyers and S. M. Ulam
- Proc. Amer. Math. Soc. 3 (1952), 821-828
- DOI: https://doi.org/10.1090/S0002-9939-1952-0049962-5
- PDF | Request permission
References
- D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222–224. MR 4076, DOI 10.1073/pnas.27.4.222
- D. H. Hyers and S. M. Ulam, On approximate isometries, Bull. Amer. Math. Soc. 51 (1945), 288–292. MR 13219, DOI 10.1090/S0002-9904-1945-08337-2
- D. H. Hyers and S. M. Ulam, Approximate isometries of the space of continuous functions, Ann. of Math. (2) 48 (1947), 285–289. MR 20717, DOI 10.2307/1969171
- D. G. Bourgin, Approximate isometries, Bull. Amer. Math. Soc. 52 (1946), 704–714. MR 17465, DOI 10.1090/S0002-9904-1946-08638-3 T. Bonnesen and W. Fenchel, Konvexe Körper, New York, 1948.
- D. G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc. 57 (1951), 223–237. MR 42613, DOI 10.1090/S0002-9904-1951-09511-7
Bibliographic Information
- © Copyright 1952 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 3 (1952), 821-828
- MSC: Primary 27.0X
- DOI: https://doi.org/10.1090/S0002-9939-1952-0049962-5
- MathSciNet review: 0049962