A theorem on convex cones with applications to linear inequalities
HTML articles powered by AMS MathViewer
- by Jerry W. Gaddum
- Proc. Amer. Math. Soc. 3 (1952), 957-960
- DOI: https://doi.org/10.1090/S0002-9939-1952-0052129-8
- PDF | Request permission
References
- S. Agmon, The relaxation method for linear inequalities, Prepublication Copy, National Bureau of Standards, Los Angeles, California.
- Leonard M. Blumenthal, Metric methods in linear inequalities, Duke Math. J. 15 (1948), 955–966. MR 28596
- L. L. Dines, Note on certain associated systems of linear equalities and inequalities, Ann. of Math. (2) 28 (1926/27), no. 1-4, 41–42. MR 1502761, DOI 10.2307/1968353
- Lloyd L. Dines, On positive solutions of a system of linear equations, Ann. of Math. (2) 28 (1926/27), no. 1-4, 386–392. MR 1502792, DOI 10.2307/1968384 T. S. Motzkin, Beiträge zur Theorie der linearen Ungleichungen, Dissertation, Basel, 1933, Jerusalem, 1936. —, Linear inequalities, Mimeographed Lecture Notes, University of California, Los Angeles, 1951.
- Erich Stiemke, Über positive Lösungen homogener linearer Gleichungen, Math. Ann. 76 (1915), no. 2-3, 340–342 (German). MR 1511827, DOI 10.1007/BF01458147
Bibliographic Information
- © Copyright 1952 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 3 (1952), 957-960
- MSC: Primary 52.0X
- DOI: https://doi.org/10.1090/S0002-9939-1952-0052129-8
- MathSciNet review: 0052129