A generalized two-point boundary value problem
HTML articles powered by AMS MathViewer
- by J. W. Bebernes and Robert Gaines
- Proc. Amer. Math. Soc. 19 (1968), 749-754
- DOI: https://doi.org/10.1090/S0002-9939-1968-0226098-3
- PDF | Request permission
References
- J. W. Bebernes, A subfunction approach to a boundary value problem for ordinary differential equations, Pacific J. Math. 13 (1963), 1053–1066. MR 156018
- Leonard Fountain and Lloyd Jackson, A generalized solution of the boundary value problem for $y^{\prime \prime }=f(x,\,y,\,y^{\prime } )$, Pacific J. Math. 12 (1962), 1251–1272. MR 163002
- Philip Hartman, Ordinary differential equations, John Wiley & Sons, Inc., New York-London-Sydney, 1964. MR 0171038
- Herbert B. Keller, Existence theory for two point boundary value problems, Bull. Amer. Math. Soc. 72 (1966), 728–731. MR 192116, DOI 10.1090/S0002-9904-1966-11572-0
- J. W. Bebernes and Robert Gaines, Dependence on boundary data and a generalized boundary-value problem, J. Differential Equations 4 (1968), 359–368. MR 228738, DOI 10.1016/0022-0396(68)90022-3
Bibliographic Information
- © Copyright 1968 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 19 (1968), 749-754
- MSC: Primary 34.36
- DOI: https://doi.org/10.1090/S0002-9939-1968-0226098-3
- MathSciNet review: 0226098