On $4/n=1/x+1/y+1/z$
HTML articles powered by AMS MathViewer
- by William A. Webb
- Proc. Amer. Math. Soc. 25 (1970), 578-584
- DOI: https://doi.org/10.1090/S0002-9939-1970-0256984-9
- PDF | Request permission
Abstract:
It is shown that the number of positive integers $n \leqq N$ for which $4/n = 1/x + 1/y + 1/z$ is not solvable in positive integers, is less than a constant times $N/{(\log \;N)^{7/4}}$.References
- Alexander Aigner, Brüche als Summe von Stammbrüchen, J. Reine Angew. Math. 214(215) (1964), 174–179 (German). MR 160758, DOI 10.1515/crll.1964.214-215.174
- Leon Bernstein, Zur Lösung der diophantischen Gleichung $m/n=1/x+1/y+1/z$, insbesondere im Fall $m=4$, J. Reine Angew. Math. 211 (1962), 1–10 (German). MR 142508, DOI 10.1515/crll.1962.211.1
- H. Halberstam and K. F. Roth, Sequences. Vol. I, Clarendon Press, Oxford, 1966. MR 0210679
- Karl Prachar, Primzahlverteilung, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1957 (German). MR 0087685
- B. M. Stewart, Theory of numbers, 2nd ed., The Macmillan Company, New York; Collier Macmillan Ltd., London, 1964. MR 0230672
- B. M. Stewart and W. A. Webb, Sums of fractions with bounded numerators, Canadian J. Math. 18 (1966), 999–1003. MR 199148, DOI 10.4153/CJM-1966-100-4
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 25 (1970), 578-584
- MSC: Primary 10.10
- DOI: https://doi.org/10.1090/S0002-9939-1970-0256984-9
- MathSciNet review: 0256984