A note on the Brauer-Speiser theorem
HTML articles powered by AMS MathViewer
- by Burton Fein
- Proc. Amer. Math. Soc. 25 (1970), 620-621
- DOI: https://doi.org/10.1090/S0002-9939-1970-0258982-8
- PDF | Request permission
Abstract:
The Brauer-Speiser theorem asserts that the Schur index of a real-valued complex irreducible character of a finite group is either $1$ or $2$. In this paper we present a brief proof of this result. From this it follows that the $K$-central nontrivial division algebra components of group algebras over a real algebraic number field $K$ are quaternions.References
- A. Adrian Albert, Structure of algebras, American Mathematical Society Colloquium Publications, Vol. XXIV, American Mathematical Society, Providence, R.I., 1961. Revised printing. MR 0123587 R. Brauer, Über Zusammenhange zwischen arithmetischen und invariantentheoretischen Eigenschaften von Gruppen linearer Substitutionen, Sitzber. Preuss. Akad. Wiss. (1926), 410-416. —, Untersuchungen über die arithmetischen Eigenschaften von Gruppen linearer Substitutionen. II, Math. Z. 31 (1930), 737-747.
- Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, Vol. XI, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0144979
- A. Speiser, Zahlentheoretische Sätze aus der Gruppentheorie, Math. Z. 5 (1919), no. 1-2, 1–6 (German). MR 1544369, DOI 10.1007/BF01203150
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 25 (1970), 620-621
- MSC: Primary 20.80
- DOI: https://doi.org/10.1090/S0002-9939-1970-0258982-8
- MathSciNet review: 0258982