Extension of a result of Dieudonné
HTML articles powered by AMS MathViewer
- by J. M. Worrell and H. H. Wicke
- Proc. Amer. Math. Soc. 25 (1970), 634-637
- DOI: https://doi.org/10.1090/S0002-9939-1970-0264605-4
- PDF | Request permission
Abstract:
Dieudonné showed that there exists a normal (countably) compact uniform ${T_1}$-space which has no topology preserving complete uniformity [4]. His example, being the space of the countable ordinals with respect to the order topology, everywhere locally has a complete uniformity. Here we show, as a corollary to Dieudonné’s result and a result of Worrell [10], that there exists a normal (countably) compact first countable involutorily homogeneous uniform ${T_1}$-space locally homeomorphic with itself which has no topology preserving complete uniformity.References
- A. V. Arhangel′skiĭ, Some metrization theorems, Uspehi Mat. Nauk 18 (1963), no. 5 (113), 139–145 (Russian). MR 0156318
- R. H. Bing, Metrization of topological spaces, Canad. J. Math. 3 (1951), 175–186. MR 43449, DOI 10.4153/cjm-1951-022-3 D. van Dantzig, Ueber topologisch homogene Kontinua. Fund. Math. 15 (1930), 102-125.
- Jean Dieudonné, Un exemple d’espace normal non susceptible d’une structure uniforme d’espace complet, C. R. Acad. Sci. Paris 209 (1939), 145–147 (French). MR 175 M. Fréchet, Sur quelques points du calcul fonctionnel, Rend. Circ. Math. Palermo 22 (1906), 1-74.
- John L. Kelley, General topology, D. Van Nostrand Co., Inc., Toronto-New York-London, 1955. MR 0070144
- R. L. Moore, Foundations of point set theory, Revised edition, American Mathematical Society Colloquium Publications, Vol. XIII, American Mathematical Society, Providence, R.I., 1962. MR 0150722
- Howard H. Wicke, The regular open continuous images of complete metric spaces, Pacific J. Math. 23 (1967), 621–625. MR 219035
- H. H. Wicke and J. M. Worrell Jr., Open continuous mappings of spaces having bases of countable order, Duke Math. J. 34 (1967), 255–271. MR 210084 J. M. Worrell, Jr., On compact spaces and Čech completeness, Notices Amer. Math. Soc. 13 (1966), 644. Abstract #66T-411.
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 25 (1970), 634-637
- MSC: Primary 54.30
- DOI: https://doi.org/10.1090/S0002-9939-1970-0264605-4
- MathSciNet review: 0264605